
Chapter 12
Using Structural and Physical–Chemical
Parameters to Identify, Classify, and Predict
Functional Districts in Proteins—The Role
of Electrostatic Potential
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Abstract In this chapter, we will overview the role of the local protein structure
environment (which we will call here: nano-environment) in maintaining the
functional purpose of different protein districts (defined as protein structure sites
delimited by their functional objectives). Namely, we suggest that the local environ-
ment at each protein point and/or region reflects, not only its constitutional/structural
role, but also its contribution to providing necessary and required characteristics for
the functional objective that such particular site is supposed to have. For instance,
protein–protein communication is executed through protein interfaces, and amino
acid residues belonging to that site must have some specific characteristics which
do not only differentiate them from the free surface residues, but also make possible
that two very specific proteins may engage, bind and by doing so, perform their
function. Similarly, enzyme function is normally related to activity of its catalytic
site residues (CSRs). Obviously, these very peculiar residues are embedded in a very
specific nano-environment (defined also by the contribution of CSR). Consequently,
the enzyme function could be described in terms of characteristics of the CSRs and
their surroundings. Based on the above considerations, and assuming that the local
nano-environment is not only defining the protein district function, but it is also a
concept for which we can design specific metrics to quantify it, and a specific set of
properties to describe it, we studied the role of different descriptors and found that,
together with hydrophobicity, electrostatic potential is of fundamental importance.
As we will better detail in the course of this work, the electrostatic potential might
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not always be the top ranked property defining the nano-environment of interest, but
it is, however, always present, contributing significantly in carving proper protein
district characteristics for specific structure/function purposes.

Keywords Protein structure · Protein districts · Structure–function relationship ·
Nano-environment · Physical–chemical properties · STING database · Electrostatic
potential · Protein interfaces · Protein specificity · Secondary structure elements ·
Catalytic site residues · Hydrophobic effect

12.1 Introduction

Java Protein Dossier [1] is a concept database and visualization tool for protein struc-
tures. JPD is a part of the STING [2, 3] platform, which provides one of the most
comprehensive collections [4] of physical–chemical parameters describing protein
sequence, structure, stability, function, and interaction with other macromolecules.
Coupled to the JPD, STING’s relational database (STING_RDB) [5] contains hun-
dreds of protein descriptors calculated for all structures deposited in the PDB such
as electrostatic potential, contacts energy, density, hydrophobicity, and many more.

Electrostatics has been shown to have a fundamental role in regulating interactions
between biologicalmacromolecules, such as proteins and nucleic acids [6, 7].Among
other aspects, the electrostatic contribution to the (de)solvation process has proved to
be remarkably important in many biological phenomena. For many applications, that
contribution is modeled as a dielectric linear response to the electric field generated
by the charge borne by the biomolecular system. Consistent with this model, the
Poisson–Boltzmann equation (PBE) has proved to be able to provide quantitative
estimates of the electrostatic interaction energy of biomolecules [8].

In addition to more than 1,300 other descriptors, Sting’s Java Protein Dossier and
relational database (STING_RDB) encompasses also the description of some elec-
trostatic features, providing the numerical value of the mean electrostatic potential
(EP) at each residue and at some relevant atoms, as well as the potential over the
molecular surface. In STING, the EP value is calculated on a per atom basis and then
reported for all eligible PDB files in a residue by residue fashion. Four precalculated
categories are shown: (1) EP at the alpha carbon atom, (2) EP value at the last heavy
atom of any residue side chain (LHA), (3) average EP value over all amino acid
atoms, and (4) EP value averaged over the patch of the molecular surface that is
attributable to that particular amino acid. The complete description of calculations
employed in order to solve the Poisson–Boltzmann equation for biomolecules is
given in [9].

In this chapter, we analyze the quantitative and qualitative assessment of the
role that electrostatic potential has on protein structure–function relationship and, in
particular, its role in defining nano-environment characteristics of functional protein
districts. Protein districts considered in this analysis are: protein–protein interfaces
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(PPI), catalytic site residues (CSR), binding site residues (BSR or interface-forming
residues: IFR), and secondary structure elements (SSE).

12.2 Nano-Environment Characteristics for Specific Protein
Districts

Having the entire set of amino acid residue properties previously calculated and stored
in the STING_RDB [5], we are ready to obtain a description of the nano-environment
of protein districts as complete as it is currently possible. Mostly because of the fact
that the BlueStar STING offers easy access to a very rich repository of protein
characteristics, the STING platform [4, 10–12] has already been used for predicting
enzyme class [13], protein–ligand analysis [14, 15], protein mutant analysis [16,
17], protein–protein interaction pattern analysis [18] as well as in research linked to
some specific biological problems [19, 20].

We can explore the properties of a nano-environment using a simple method that
is both self-explanatory and intuitive. To understand it, imagine that we can insert
an imaginary probe anywhere inside a protein structure and obtain back a report
describing characteristics of the environment in which the probe was embedded.
Obviously, we cannot physically do this in the real world, and therefore the probe
needs to be substituted with the calculation of values, metrics, and forces we desire to
quantify at each particular point/site. This approach somewhat resembles, but with a
different focus, that of the GRID method for the calculation of molecular interaction
fields in drug design.

The advantage of this approach is that any amino acid residue, or any of its
side or main chain atoms, could serve as the center for the probe and from that
particular point, the interplay of all forces might be estimated, cataloged, and stored
into an appropriate database—inour case the STING_RDB.Once stored, the attribute
values could be mapped back to the protein structure for visual inspection or used in
statistical/numerical analysis.

Our assumption is that any specific environment is fine-tuned for its function and
therefore can be identified, parameterized, and classified accordingly. If one were
to consider, for example, protein contact interfaces, it could be expected that such
specific areas of the protein, occupying part of its surface, have characteristics suffi-
ciently different from the ones built by amino acid residues found at non-interacting
surface areas. In fact, we consider such assumption being in line with the biolog-
ical requirements for performing a specific function; the function in this example
being communication with a very specific partner protein. So, this protein district or
functional region, as we name it, is described by precise attributes and their values,
making possible not only to distinguish it from the rest of the protein structure but also
predicting the district coordinates in other proteins that have not been characterized
chemically/biologically.
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Similarly, the nano-environment within which CSR are acting must be very spe-
cific for each protein family (or if we would like to be more precise, subfamilies
defined up to and including the third digit in the EC number {for example: 3.4.21.x}).
Such peculiarity of nano-environments for CSR is also intuitively expected because
similar, or better, the same chemical reactions need specific conditions to operate on
diverse substrates. The identification and classification of the CSR nano-environment
provides a fundamental tool for predicting the enzyme class of those proteins whose
structure has been deciphered but for which no experimental data exists to identify
their biological function and activity. As it is well known, each year more and more
protein structures with no known function are deposited in the PDB [21] creating a
very strong demand for computationally based enzyme classification methods.

In addition to interface and CSR nano-environments, we will also address here
the environment of binding residues and of secondary structure elements, because
those environments are also expected to be very specific and, therefore, potentially
useful both for classification and prediction purposes.

In all cases of protein district nano-environments, the electrostatic potential plays
a crucial role and its relevance needs to be contrasted with other protein structure
attributes/properties.

Procedures
Proper procedures for data collection and analysis had to be designed in order tomax-
imize the volume of data, eliminate redundancy, and to ensure we could operate with
independent protein structure descriptors. Some of the data preparation procedures
we have used are briefly described here.

In order to ensure a proper analysis, we needed carefully designed data sets to
collect protein structures that could provide useful information on relevant nano-
environment characteristics, (such as the electrostatic potential or surface hydropho-
bicity index (SHI) in some specific protein structure districts).

For the nano-environment analysis of catalytic site districts, members of protein
families and subfamilies differing among themselves only at the fourth EC number
(x.y.z.*) were assembled in datamarts, which were additionally filtered with regard
to their sequence similarity. The sequence similarity threshold used in this case was
40%. Properties of the active site were then checked against those of the rest of
the protein to identify significant variations that could clearly distinguish the nano-
environment.

To analyze protein–protein interactions, we first identified in the PDB all protein–
protein complexes and then we added several filters to select the most informative
ones. These filters were defined in eight consecutive layers as described below.

This work started in 2010 and was divided in a number of projects, executed
by members of our lab. All results presented in this chapter were collected before
December 2012 and data completely analyzed before June 2013. The version of the
PDB that we have used for the initial dataset selection contained protein molecules
available until November 8, 2010. We downloaded from the PDB ftp site [22, 23] a
total of 165.720 chains in 68.997 PDB files. This initial ensemble of structures was
used as the starting point, providing the original material for the subsequent restraint
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guided selection that would eventually result in the final working dataset, which we
will refer to here as the “DS95” data set.

The first filtering layer consisted in selecting only those structures obtained by
X-ray diffraction (NMR structures were not considered). The second layer consisted
in using only PDB files that contained only protein chains (i.e., protein–DNA and
protein–RNA complexes were excluded from the analysis). The third layer consisted
in using PDBfiles (asymmetric units) that contained exactly the number of chains that
EBI PISA version 1.18 [24] indicated as the correct oligomeric state. The fourth layer
selected only PDB files with at least two protein chains. The fifth kept only structures
with X-ray resolution better or equal to 3 Å. The sixth layer actually consisted of two
subfilters: the first one eliminated all PDB files containing protein chains with less
than 50 amino acids, and the second one excluded all complexes having an interface
with an area of less than 200 Å2 (as calculated by the SurfV program [25]). The sev-
enth layer eliminated all PDB files containing incomplete proteins: for example, the
ligand-binding domain from the AMPA subtype Glutamate receptor (263 residues
per chain) is available in 3KGC in its dimeric form, but it does not correspond to the
real, full protein length nor does it represent its real oligomeric state; in this case, a
better representation of the complex is available in PDB entry 3KG2, which contains
the full-length AMPA subtype Glutamate receptor as an homo-tetramer having 823
residues in each chain.We decided to remove structures of incomplete proteins using
sequence information fromUniProtKB [26]. Sequences were retrieved fromUniPro-
tKB in FASTA format and the relevant details retrieved from the sequence header.
The PDBSWS database—PDB/UniProt Mapping was used to relate identifiers of
the UniProtKB to their counterparts in PDB [27]. The eighth and last filtering layers
consisted in removing sequence redundancy: this was done using PDB clusters [28],
specifically Cluster_95 [29]. The resulting final data set, subsequently denominated
DS95, ended up containing a total of 6931 non-redundant chains from 6192 PDB
files. The above-described multilayer procedure was mostly automatized (except for
some manual inspections [to be described below]), providing necessary robustness
in application and fast results when demand for repetitive filtering was identified.

An additional feature was considered during data analysis (although not as a
selective step): we annotated PDB structures that contained chains factually proven
to belong to membrane proteins. This information was derived from the PDB TM
[30] and MPtopo [31] databases, and helped us identify 119 distinct chains (from 65
PDB files) corresponding to membrane spanning proteins.

It is important to mention that, in spite of such a rigorous selection, we were still
able to identify in DS95 some protein chains that were actually fragments, and also
some structures where the oligomeric state was different between PISA and PDB.
Additional manual curation was required to eliminate those PDB entries as well.

In addition to DS95, we also prepared DS100, DS70, and DS30, using the cor-
responding clusters provided by [29]. The respective numbers of chains and PDB
entries making up the protein complexes for the mentioned datasets were: DS100–
9009 chains from 8082 PDB entries; DS95–6931 chains from 6132 PDB entries;
DS70–6368 chains from 5743 PDB entries, and finally, DS30–4605 chains from
4219 PDB entries. The reason for building four data sets was to have as complete
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information as possible on how the data would change by successive elimination of
similar (sequence-wise) proteins. As it turns out, DS95 proved to be in many ways
the most representative dataset for our goals and was used to analyze protein–protein
interfaces, including considerations about the hydrophobic effect being the princi-
pal driving force for protein binding, with the electrostatic interactions providing
complementary binding energy.

The nano-environment of secondary structure elements was studied using a dif-
ferent approach, with a dataset consisting of various datamarts. In this case, we first
created datamarts containing proteins with: (A) only alpha helical elements (with
turns but no beta pleated sheets present), (B) only beta sheets present (with turns
but no alpha helices present), (C) both alpha helices and beta sheets present (as well
as turns), and (D) no regular secondary structure elements (unstructured or partially
structured proteins). The definition of SSE was established by requiring a consen-
sus between the definitions provided by the Stride and DSSP algorithms and the
definition provided in the PDB file itself.

Our goal here was to single out any significant variation in the average values of
structure/physical/chemical properties that were specific of each nano-environment.
To this end, we compared the same attribute values between the investigated nano-
environment and the rest of the protein structure, looking for any significant variation
that would be clearly in evidence. When this variation occurred simultaneously for
a number of descriptors, a “composite signal” would in fact be assembled, being
characteristic of only one given SSE type.

12.2.1 Protein Function and Catalytic Site Residues

Enzymes perform their biological role using some specific amino acids known as
catalytic site residues (CSR). Thus, the function and taxonomy of a particular enzyme
can be obtained indirectly through the differentiation of its CSR from the rest of the
protein amino acids, followed by a comparison of their observed properties with
known and cataloged evidence about CSRs in other enzyme families.

We hypothesized that the catalytic reactions performed by enzymes must depend
on the physicochemical properties of the nano-environment around the CSR. Based
on this conjecture, we have proposed amethod for the characterization and prediction
of CSR using structural protein descriptors from STING_RDB. In particular, this
database provides helpful information about the physicochemical properties shared
by CSR for a variety of enzyme families.

The goal of our investigation was to characterize the common elements of the
nano-environment surrounding the CSR’s (based on their physicochemical prop-
erties) by identifying, analyzing, and finally presenting comprehensible rules for
selecting only the CSR, extracted from STING_RDB of structural protein descrip-
tors.

The enzyme structures available from PDB were separated according to their
EC numbers and their CSR were labeled according to the annotation found in the
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Catalytic Site Atlas [32]. Sequence redundancy (up to 40% maximum) of proteins
was identified, and enzymes above the threshold were removed from further consid-
eration. Then, the STING’s protein structural descriptors were extracted for all amino
acids of all selected enzymes. Next, attributes were selected using an adapted evo-
lutionary algorithm called GARIPPER [33] and protein structure descriptors stored
in STING_RDB so that they could be delivered as an input to the rule induction
algorithm RIPPER [34]. In this way, we were able to obtain “human comprehensi-
ble” rule sets for CSR’s selection for enzymes belonging to different EC numbers.
Sequence conservation [35, 36] parameters were excluded from analysis in order
to obtain a fully physicochemical characterization of the CSR’s nano-environment.
Due to the unbalanced distribution of the two classes of amino acid residues (CSR
and non-CSR), somemodifications were introduced in GARIPPER to allow for more
robust processing.We added techniques for preprocessing data, using under and over
sampling methods, into the evolutionary algorithm to achieve a proper selection of
the suitable ratio between CSR and non-CSR samples in the training dataset. That
modified version of GARIPPER was named as GARIPPEROUS (GARIPPER Over
and Under Sampled).

What we noticed immediately before starting the large-scale examination of CSR
nano-environments was that a CSR could be specified (selected/separated) uniquely
and simply through a set of selection rules based on a list of physicochemical para-
meters and of corresponding values. Surprisingly, we observed that imposing value
constrains on only a few attributes could eliminate all amino acids in a protein but
the CSR. Using initially a manual approach, we tested 25 different protein families
and all of them gave positive results in terms of obtaining a simple and reduced set of
rules for separating CSR from all the other ones. Such sets of rules usually contained
from 2 to 7 attributes and the corresponding ranges for their numerical values. In
fact, once applied to a single representative of the enzyme subfamily (defined with
the first three digits of its corresponding EC number), the filtering procedure would
also identify specifically the CSR in other members of that same subfamily (with
few exceptions). This fact coupled to the observation that there are definite and pre-
cise differences among enzyme subfamilies, prompted us to suggest that it would be
possible to build a table of CSR nano-environment characteristics specific for each
enzyme family, and that these tables could be later assembled into what we named
“the periodic table of enzymes.” The name is intended to suggest the specificity of
the description used for each enzyme family, albeit there is no expected periodicity
in the encountered descriptors or in their numerical values.

In Fig. 12.1, panels a, b, and c, the selection of CSR is illustrated based on applied
structural and physicochemical parameter constraints. The procedure reveals how
the ensemble of amino acid residues remaining on the visual display of the STING’s
Java Protein Dossier becomes smaller as additional parameter constraints are added
to the list of previously established ones. At the final stage, only the CSR are shown,
and the SELECT procedure is completed. The selected parameters and their numer-
ical values used to obtain a comprehensive (yet minimalistic) description of the
nano-environment for a given enzyme function (serine protease: elastase—1PPF)
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are presented in Table12.1. Application of the same (or very similar) constraints
to the structure of another member of the same subfamily would bring forward
the corresponding (in spatial position and amino acid type) CSR (or a slightly
broadened ensemble of residues which includes the CSR) even if the sequences
of the two examined proteins were quite dissimilar. This observation shows that the
nano-environment of CSR is mostly preserved within the subfamily and is therefore
describable by a very similar syntax. As mentioned above, so far we have not found
two different subfamilies of enzymes having the same constraints for the parameters
describing their CSR nano-environment nor have we found an enzyme subfamily
without a corresponding constraint set for filtering its corresponding CSR.

After successfully testing our approach manually, we resorted to an automated
machine learning approach. For the automated machine learning approach, we opted

Fig. 12.1 Illustration of the “SELECT” procedure, available under Java ProteinDossier of BlueStar
STING. In panel a the structure of human leukocyte elastase (EC#: 3.4.21.37—a serine protease)
enzyme: 1PPF, contains a total of 218 amino acid residues in the E chain. The CSR ensemble is
constituted by the following three residues: His_57, Asp_102 and Ser_195 (sometimes GLy_193
and Gly_196 are also included in the ensemble). In order to eliminate all other amino acid residues
of the E chain, we applied a sequence of only three constraints: the first was conservation, measured
in relative entropy (RE), with the RE values being restricted to less than or equal to 7 (indicating
well-conserved residues). This first constraint eliminatedmost of the residues as they did not comply
with imposed conditions. Only 16 residues (less than 10%of the initial number) remained, including
the CSRs. In panel b the second filter was imposed by selecting electrostatic potential, calculated
at the surface of the protein, which is created by individual residues, and the range of values for
this parameter was selected to be higher than –2 and below 300kT/e. By applying these filters, only
4 residues complied, including the three which belong to the CSR ensemble. Panel c the last filter
was the “Number of unused Contacts,” being set to higher than 240 (implying a high potential of
the CSR to create contacts with spatial neighbors)
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Table 12.1 Amino acid residue parameters and their value ranges for section of CSR in 1ppf.pdb

Structure property Range of values for the property

Conservation (HSSP): relative entropy ≥7

Electrostatic potential at surface [−2; 300]

Unused contacts ≤240

for using the empirical cumulative distribution functions (ECDF) for EP descriptors
averaged over nearest spatial neighbors (Weighted Neighbor Averages—WNA), as
described in [37]. The plots shown in Fig. 12.2 indicate the probability of finding

Fig. 12.2 The empirical cumulative distribution functions (ECDF)of electrostatic potential descrip-
tors averaged over nearest spatial neighbors (Weighted Neighbor Averages—WNA) for two ensem-
bles: CSR and non-CSR. Each subplot depicts the difference between the ECDF’s of the catalytic
residues (red) and non-catalytic residues (blue). The maximal distance between two curves corre-
sponds to the Komolgorov–Smirnov statistics [38]
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a value which is equal or lower than the EP value (x-axis normalized to [0, 1])
in two ensembles (CSR and non-CSR). The existence of a significant (P < 0.01)
difference between two classes (for catalytic and non-catalytic residues) flags the EP
attribute as a descriptor capable of distinguishing between the two. The EP calculated
at the last heavy atom (LHA) of the residue side chain has the greatest distance
between two distributions and therefore the highest potential for CSR versus non-
CSR discrimination.

The machine learning approach was favored in our work as the above-described
manual onewas not sufficiently robust to be carried out for a large volume of enzymes
containing numerousmembers of certain subfamilies. Even small variations in a set of
parameters and/or modifications in range delimiters for their numerical values might
create problems, which are insurmountable for the manual approach. Consequently,
machine learning was employed and all sequence-wise, non-redundant members of
enzyme subfamilies were analyzed aiming to obtain general sets of rules for the
description of their CSR nano-environments. As in the manual approach described
above, the EP continued being one of the relevant constraints, but in spite of the
predictive power it has for distinguishing CSR from non-CSR (particularly in case
of EP calculated around last heavy atom (LHA) in the side chain—see Fig. 12.2), it
was actually found missing as the top ranked attribute in the final list of constraints
selected for filtration in machine learning approaches.

12.2.2 Enzyme Specificity and Binding Site

Enzymes belonging to the same super family of proteins, in general, operate on a
variety of substrates and are inhibited by a wide selection of inhibitors. In this part of
our work, themain objective was to expand the scope of studies that consider only the
catalytic site amino acids while analyzing enzyme specificity and, instead, include
a wider category, which we have named the interface-forming residues (IFR). We
wanted to identify those IFRs (characterized primarily by their decreased accessi-
bility to solvent after docking of different types of inhibitors to, in this case study,
subclasses of serine proteases) and then create a table (matrix) of all amino acid
positions at the interface as well as their respective occupancies and characteristics.
Our goalwas to establish a platform for analysis of the relationship between IFR char-
acteristics (their nano-environment) and binding properties/specificity for bimolec-
ular complexes.

As a result of that effort, we have proposed a novel method for describing bind-
ing properties and delineating the specificity of serine proteases by compiling an
exhaustive table of interface-forming residues (IFR) for serine proteases and their
inhibitors. As the Protein Data Bank (PDB) does not contain all the data that our
analysis required, an in silico approach was designed for building the correspond-
ing complexes. The IFRs were obtained by “rigid body docking” among 70 struc-
turally aligned, sequence-wise non-redundant, serine protease structures with three
inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine, and ovomucoid third
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domain inhibitor. Then, we created a table (matrix) of all amino acid positions at the
interface and their respective occupancy. We also developed a new computational
protocol for predicting IFRs for those complexes, which were not deciphered exper-
imentally so far, achieving accuracy of at least 97%. Details of those experiments
are described in [39].

In the context of this book chapter, the conclusions that we reached regarding
enzyme specificitywere that the interfaces of serine proteases prefer polar (but includ-
ing alsoglycine) residues (with someexceptions) (seeFig. 12.3). Thus, the IFRpocket
of serine proteases is not formed by predominantly hydrophobic residues; it is a rather
polar environment. The surfaces (not including interface areas) have a prevalence of
charged residues. However, charged residues were found to be uniquely prevalent
at the interfaces between the “miscellaneous-virus” subfamily of serine proteases
and the three inhibitors. This prompted some speculations about how important this
difference in IFR characteristics is for maintaining virulence of those organisms and
significance of the electrostatic interaction in considering the molecular aspects of
infectious processes.

Such description of the interface-forming residues (IFRs) provides a unique tool
for both structure/function relationship analysis as well as a compilation of indicators
detailing how the specificity of various serine proteases may have been achieved
and/or could be altered. It also indicates that the interface-forming residues which
also determine specificity of the serine protease subfamily cannot be presented in
a canonical way but rather as a matrix of alternative populations of amino acids
within respective nano-environments, occupying a variety of IFR positions. The
descriptive level of the IFR nano-environment in this approachwas somewhat coarser
(in terms of amino acid residue type and position) than the level used in CSR nano-
environment characterization, where physical and chemical descriptors are related to
atoms in amino acid main and/or side chains. Nevertheless, the same assumption was
applied and tested as in other nano-environment study cases, revealing a very similar
positive output, giving us a more detailed knowledge on how enzymes fine-tune their
specificity toward different target substrates/inhibitors based on nano-environment
changes resulting from the complex interplay of forces generated by all surrounding
and constitutive amino acid residues.

12.2.3 Physicochemical and Structural Description
of Protein–Protein Interfaces

When considering protein–protein interactions, it is well known that they regulate
most biological processes either within or outside cells. Protein–protein interac-
tions are involved in gene expression regulation, metabolic pathways, immunologic
response, etc. [40–42]. Proteins communicate with each other through a portion of
their surfaces, being able to specifically recognize their partners even in a crowded
environment within cells. In fact, macromolecules may interact with different part-
ners by different binding modes, using for each occasion a different portion of
their surface.
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Fig. 12.3 Percentage difference in area occupied at: Surface-Interface. The nano-environment of
serine protease interfaces seen through its amino acid composition: This figure presents the dif-
ference in occupancy percentage of total enzyme free surface and the IFR area for all 70 serine
proteases bound to the inhibitor ecotine, BPTI, and ovomucoid third domain. The enzymes were
classified into the following subfamilies: Chymotrypsin (4), Elastase (5), Kallikrein (4), Trypsin
(9), Venom (2), Thrombin (5), and Miscellaneous-virus (2) {the number in parentheses represent-
ing the number of observed structures}. Average values of percent occupancy are presented for
multimember subfamilies. Bars on the right side of the graph indicate that the residues are more
frequently found at the surface than on the interface. Bars on the left side of the graph indicate that
particular residue class is more frequently found at the interface than at the surface

In order to gain insight into the atomic details of the interactions between proteins,
the knowledge of their three-dimensional structures is critical [43]. When enough
structural information is gathered, complex biological processes may be understood
in more detail, in particular, because the organism complexity is higher than the sum
of the intricacies found in each individual component. The harmonious behavior of
the many components inside cells accounts for its homeostasis. Each component of
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such intricately coupled system could, in fact, be essential for a particular step of a
given regulatory process, involving two protein partners acting in a cyclic way and
resulting in coherent feedback [44]. Related to that, it is recognized that many health
disorders are the result of protein–protein miscommunication at some level [45].

It is essential to be familiar with the fact that any study attempting to deal with
protein–protein interactions will have to face the present lack of sufficient volume
of curated data necessary for a consistent statistical analysis. However, this problem
could be compensated today by modeling protein structures and their complexes.
As stated in [43], it is unlikely to find a soluble protein that either lacks structural
information available in public databases or that cannot be modeled by standard
homology modeling techniques, such as Modeller [46], or threading algorithms,
such as iTasser [47]. This statement can be confirmed by the number of new folding
patterns in the Protein Data Bank [23]. At present, the last unique fold deposited in
the PDB dates back to 2008.

Also, when it comes to protein–protein interactions, only about 15% of the known
protein structure complexes are so-called hetero-complexes (i.e., complexes com-
posed by nonidentical proteins). This is due to the difficulty in obtaining the crystal
state of hetero-complexes, especially in the case of transient complexes with low
affinity.

This scenario has stimulated a continuous demand for computational structural
biologists to develop tools which help increase the understanding of protein–protein
associations by combining structural information on just a single protein with data
coming from molecular biology and biophysical techniques, which usually have
a lower resolution. Due to the great importance that functional protein networks
represent to organisms homeostasis, the computational approaches to model those
networks, predict protein interactions, and consequently, rationally design new drugs
and agrochemicals represent a constantly increasing stimulus for the scientific com-
munity. Our objective, when using protein structure information and knowledge
about their interfaces, is that we might be able to avoid a non-desired protein inter-
action to take place (eliminating side effects for drugs both in areas of human health
and plant–pathogen interactions) [48–53]. For this, the understanding of the physic-
ochemical and structural basis of protein–protein interfaces is mandatory. Also, the
understanding of the basis of macromolecular recognition at the atomic level may
be used to guide docking and molecular dynamics experiments, and also to assist in
experimental design for site-directed mutagenesis to change specific area and vol-
ume constraints. On top of all this, it is very important to try to fully understand the
driving force for protein–protein binding and in particular, which are its principal
components.

The ability to predict whether two proteinswould interact and the location for their
interfaces is an open research topic. The international competition named Critical
Assessment of Predicted Interaction [54] evaluates different methods for such a task.
In the CAPRI, the monomeric structures of each protein–protein complex subunit
are given and the multimeric structure is experimentally known but not released. The
prediction is evaluated by counting correct interface contacts.



240 G. Neshich et al.

Many methods attempted to predict correctly interface-forming residues. Using
the same test set composed of known protein structures (both isolated and in com-
plex), Zhou and Qin [55] compared recently six methods accessible through their
respective web servers: ProMate [56], PPI-Pred [57], PINUP [58], SPPIDER [59],
cons-PPISP [60], and Meta-PPISP [61]. Each of these methods for predicting inter-
faces is using some structural and physicochemical properties of the interacting
proteins, but only to a limited extent (among them: hydrophobicity, electrostatic
potential, surface shape, solvent accessibility, hydrogen bonds established across the
interacting proteins and space clashes).

Allmentionedmethodsmake use of the so-called sequence conservation attribute.
Our work focused on designing an algorithm for classifying amino acid residues
belonging to protein interfaces (separating them from those that do not), entirely
excluding attributes that are not measured directly from the protein structure, such
as sequence conservation.

To assess the potential of simple linearmethods for prediction of interface-forming
residues using physiochemical attributes only, a plot with the average values (divided
by their respective standard deviations) for properties of interface and free surface
amino acid residues was generated, based on a non-redundant dataset DS30 (see
details in “Procedures” section). As shown in Fig. 12.4, a large number of parameters
were analyzed with respect to their intrinsic capacity of differentiating those two
residue ensembles, for all amino acid types. All the descriptors having their values
away from zero are marked as most promising attributes for prediction purposes.
Regarding the electrostatic potential, except for the EP@surf, the other three EP
flavors are clearly capable of indicating which a. a. belong to the interface ensemble
and which belong to the free protein surface.

Next, all descriptors may be linearly combined to develop an approach for pre-
dicting interface residues using linear discriminant analysis (LDA). The LDA uses
the average and standard deviation values retrieved from a training dataset, for each
attribute, for both interface and free surface residues. In the development of the
STING-LDA predictor, the DS30 dataset was submitted to tenfold cross validation
in order to check for possible training bias and the final predictor was built using the
entire DS30. Any amino acid residue is then classified into interface or free surface
ensemble following the maximum likelihood equations:

fIFR = 1

(2π)N/2 |Σ IFR|1/2 exp
[
−1

2
(x − μIFR)′ Σ−1

IFR (x − μIFR)

]

fFSR = 1

(2π)N/2 |ΣFSR|1/2 exp
[
−1

2
(x − μFSR)′ Σ−1

FSR (x − μFSR)

]

where IFR stands for interface-forming residues, FSR for free surface residue, x
is the attributes vector for the amino acid residue being predicted, μIFR and μFSR
are the vectors of attribute averages for each ensemble, and ΣIFR and ΣFSR are the
vectors for attribute variances.
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Fig. 12.4 Avg/STD difference between IFR and FSR. Radial plot for 46 different protein struc-
ture and physicochemical properties, presented for two ensembles—IFR and FSR and for all 20
amino acids. The values plotted are the attribute averages divided by their corresponding standard
deviations, and were extracted from the BlueStar STING associated to the DS30 non-redundant
dataset of protein–protein complexes. The values far from zero reveal high prediction power of the
respective attribute. Full description of all attributes (and acronyms) can be found at: http://www.
cbi.cnptia.embrapa.br/SMS/STINGm/help/MegaHelp_JPD.html

The STING-LDA gives the probability for individual amino acid residues to be
located on the interface of protein–protein complexes. STING-LDA is currently
implemented into the Java Protein Dossier (JPD) module of BlueStar STING. The
STING-LDA results on known protein–protein complexes show that high values of

http://www.cbi.cnptia.embrapa.br/SMS/STINGm/help/MegaHelp_JPD.html
http://www.cbi.cnptia.embrapa.br/SMS/STINGm/help/MegaHelp_JPD.html
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the classification threshold (above or equal to 80%) will return just a fraction of the
true interface, but with high precision or reliability. In turn, when the classification
threshold is reduced to a smaller value (under 40 or 30%), the coverage of the inter-
face predicted is higher, but with more uncertainty. It is up to the user’s requirements
that this classification threshold should be decided.

When comparing STING-LDA with the other methods, two outstanding points
need to be emphasized: (A) all other methods use sequence conservation attributes
while STING_LDA does not, guaranteeing that our method would still function
for orphan structures, where other methods would fail; and (B) the performance of
STING-LDA is higher than most other methods with the exception of Meta-PPISP
and, for some classification thresholds, PINUP. The comparison was carried out
following Zhou and Qin [55] work, where the precision is used to rank methods
according to specific sensitivity (coverage) values. As one may clearly observe on
Fig. 12.5, adding the WNA attributes to classifier increases performance of the pre-
dictor. However, adding conservation attribute to WNA attributes does not increase
performance, indicating that certain plateau was reached. This means that all the

Fig. 12.5 IFR prediction performance dependence on cutoff values for the LDA classifier with
conservation attributes and comparison with Sting-LDA-WNA. Classification with a cutoff of 0.5,
the precision rate is always above 85%, reaching more than 95% with a cutoff of 0.9. The MCC
rate is higher for a 0.5 cutoff; nevertheless, using a cutoff of 0.5 results in a similar MCC. When
comparing the performanceof theSting-LDA_WNAwith theSting_WNA_Conservation classifiers,
no difference is noted for the three selected cutoff values
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necessary information for distinguishing IFRs from FSRs is present in the original
descriptor set, (retrieved directly from a protein structure) if a sufficiently extensive
list is used. The electrostatic potential properties (in one of the four available flavors)
figured among the top 5 ranking attributes used by the STING-LDA_WNA for pre-
dicting protein interfaces. However, more appropriate insight into the real EP rank
will be obtained only after understanding the main components and the principal
driving forces that guide protein–protein binding, something we will discuss in the
next section.

12.3 Hydrophobicity as the Major Driving Force
of Protein–Protein Interactions and EP as a Crucial
Complementary Alternative

Todate, a quantitative assessment of the relevanceof the hydrophobic effect as a deter-
minant of protein–protein interactions remains an unmet goal. Quantifying it exactly,
and then qualitatively analyzing possible exceptions, was never fully described in
the literature in spite of the existence of a high volume of papers dealing with this
issue.

Starting from the premise that the hydrophobic effect has a significant influence in
almost all protein–protein associations [62–68], we decided to design a new approach
that would define how to effectively measure the hydrophobicity of interfaces, and
that would be capable of assessing precisely how important and wide spread is such
contribution within the assembly of complexes in the known protein structure uni-
verse. To achieve this, we have defined a specific parameter associated/related to
hydrophobicity: the surface hydrophobicity index (SHI). The principle considered
here was that, if the hydrophobic effect is a driving force for protein oligomer-
ization, the interface area should be slightly more hydrophobic than the remaining
surface (here also referred to as free surface). This larger local hydrophobicity at
the interface might be measured by a specific, well-described, and intuitive descrip-
tor/parameter/index. Thus, the SHI of a given chain in isolation, which is to say
the SHI of a protein chain not assembled into the complex with any other protein
chain, is a value that considers hydrophobicity at the interface area plus the one at the
remaining free surface area and it should be higher (more hydrophobic) than the SHI
of a given chain in complex. In the latter case, we have a measure of hydrophobicity
for only the free surface area for this particular protein chain(s) as the interface is not
any more accessible to the solvent. Counting howmany complexes obey such behav-
ior in the datasets described in the “Procedure” section, one may have a very good
idea of how often proteins use the surface hydrophobicity as a major driving force in
order to create complex assemblies with other protein molecules. In other words, it
is possible to precisely assess how important and wide spread the hydrophobic con-
tribution is for the assembling of protein complexes in the known protein structure
universe.
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The three most cited hydropathy scales were used to construct three different
SHI flavors: Kyte–Doolittle [69], Eisenberg [70], and Engelman [71]. All three SHI
(hydropathy scales) flavors for all four data sets (DS100, DS95, DS50, and DS30)
have shown a very similar behavior (albeit, not identical, as in fact was expected)
regarding oligomerization and other derived indicators.

In this work, the �SHI (used interchangeably with: dSHI) was introduced and
defined as the difference between SHI calculated for a selected chain, separated from
any other one (SHIisolation) and SHI calculated for the same chain but now assembled
in a complex, as described in a corresponding PDB entry (SHIcomplex). A positive �

SHI indicates that the interface area is more hydrophobic than the remaining protein
surface area.

Strong positive correlation was found to exist among the�SHI value and the ratio
between corresponding interface size and the total surface area size (both for single
chain proteins and complete protein/oligomeric complexes). This implies that as the
size of the interface grows, so it does the area of hydrophobic residues that compose
the selected interface, which, in turn, becomes buried during complex formation.

Slightly more than 91% of all studied interfaces obey the rule: �SHI >0, and
for interfaces of the most frequent size (>3,000Å2) in the DS95 set, this percentage
rises to more than 98%. Cases which do not obey the �SHI >0 rule were found
to belong to three major classes: a) proteins having significantly smaller than the
average interface sizes, b) membrane proteins, and c) some large oligomers from
virus capsids. More importantly, a total of 99.9% of the complexes where core
residues are found to be part of the interface (85% of the DS95 complexes), obey
the dSHI >0 or dSHIp >0 or dSHIcore >0, indicating clearly the high degree of
occurrence of cases where hydrophobic effect is a major driving force in protein
complex formation. The dSHIp corresponds to the SHI value calculated for protein
conglomeration considered completely (as in capsids) and dSHIcore corresponds to
the SHI value where the interface is identified with the region where amino acids
have completely lost access to the solvent. In Table12.2, we depicted how dSHI is
behaving for those chains that have core residues and for those that do not.

In this part of our work, we describe how frequently proteins use the hydropho-
bic effect, assumed to be a major driving force that provides the energy necessary
for establishing the protein complexes, and we also show how this influence varies
with the size of the interface area. The intertwining of those two factors is also
de-convoluted so that one could understand the influence of changing the profile
of constituent amino acids in the function of the interface geometry and its chem-
ical characteristics, (a typical example to illustrate such interdependency would be
absence or presence of interface core). The density of internal and interchain contacts
was also studied, yielding results that indicate a higher density of internal contacts
among amino acids occupying the interface area when compared to the free surface
area. The internal contact density profiles for small and large interfaces also offers
a plausible explanation for compensative energy sources used instead of hydropho-
bic effect for protein complex formation in the case of proteins with much smaller
than average interface sizes (where in fact the largest occurrence of deviation from
dSHI >0 rule was observed).
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Table 12.2 The dSHI behavior for chains with and without core interface residues; all three
hydrophobic scales are shown

Kyte–Doolittle Eisenberg Engelman

Number % Number % Number %

Chains without CORE

dSHI > 0 684 65.52 732 70.11 713 68.30

dSHI = 0 26 2.49 16 1.53 46 4.41

dSHI < 0 334 31.99 296 28.35 285 27.30

Chains with CORE

dSHI >0 5521 93.78 5550 94.28 5557 94.39

dSHI = 0 29 0.49 20 0.34 55 0.93

dSHI < 0 337 5.72 317 5.38 275 4.67

From trends observed in Fig. 12.6, it is clear that the protein–protein interactions
for most of the cases where the interface areas are close to its average value (or above
it), predominantly use the hydrophobic force for binding. The average interface area
is approximately 2,100Å2 (but the standard deviation is rather large). However,
proteins that form smaller interfaces (below the value of an average interface area
size), such as the case of serine proteases bound to their respective inhibitors, would
have to employ alternative energy sources in order to compensate the deviation from
the dSHI >0 rule, most frequently finding it in electrostatic interactions. This point
was confirmed by the presence of a higher density of charge–charge interactions and
also of hydrogen bonding at those particular interface areas.

In the session dedicated to enzyme specificity, we outlined that the serine pro-
teases, for example, have rather small interface areas (around 600Å2) and at the same
time a large portion of their IFRs belong to the ensemble of polar residues, indicating
that the electrostatic potential and interactions generated from it could provide the
missing energy source for stabilizing serine protease complexes.

12.4 Protein Folding and Elements of Secondary Structure

To understand the relationship between the amino acid sequence of a protein on
one side and protein structure and function on the other, we proposed an in depth
analysis of the nano-environment where the protein secondary structure elements
(α-helix, β-sheet and turns) are inserted. The event that motivated such approach
was the previous identification of the existence of certain “signals,” i.e., a variation
in the values of physical–chemical descriptors observed in the three-dimensional
space where the secondary structure is inserted. Understanding how the elements
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Fig. 12.6 �SHI Eisenberg versus number of DS95 chains in each interval of interface areas.
Relationship between fraction of chains that obey �SHI >0 rule (in % of D95 dataset) and size
of their respective interface areas. The Eisenberg hydropathy scale was used to generate data (the
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of secondary structure are formed paves the way to understanding how proteins
assume their final structure and, hence, how they perform their function. In this
work, we again used descriptors from the STING_RDB, a database unique in the
world because it brings together in one place more than 1,300 descriptors (physico-
chemical and structural) of all amino acid residues, for each chain, of all structures
deposited in the PDB (Protein Data Bank). The non-redundant structures from PDB,
having corresponding structure/function descriptors stored in STING_RDB, were
separated in different datamarts obeying strict selection rules as described above
in “procedures.” The structures contained in such datamarts had their secondary
structure elements (of equal size) structurally aligned and then the physicochemi-
cal and structural attributes, describing the nano-environment where an element of
secondary structure was located, were extracted and their averages calculated. This
process was used to search for “signals” and was applied in order to the enhance
signal to noise ratio (medium to high level noise is normally present in all biological
measurements). We were able to identify a series of “signals” encountered in pro-
tein structural space and attributed to specific SSE types, but here we only present
(Fig. 12.7) the EP signal for alpha helical and for beta pleated sheets. These signals
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Fig. 12.7 Electrostatic potential calculated at alpha carbon (CA) atom of amino acid residues
before, during and after the 12 amino acid residues long alpha helical structure (placed in the
middle of the plot). The observed “signal,” visualized here as a variation in average value of the
EP@Ca, was obtained from 178 (a) structurally aligned alpha helices and 1,330 beta strands (b),
encountered in proteins of (α + β) and (α/β) type. As depicted on the top inset (red line), one can
observe in (A) two peaks in EP@Ca average values: the first one occurring at the first amino acid
residue of the SSE analyzed and a second one which occurs 3 residues after the C-terminal of the
SSE studied and in (B) that the EP@Ca average value is clearly lower starting at the first amino
acid residue before the N-terminal of the SSE analyzed and ending at the C-terminal of the SSE
studied. The blue bar graph is showing the reliability of data in terms of how close is the number
of structurally aligned structures at any position of the alignment to the optimal (maximum) value,
which in the (A) case is equal to 178 and in the (B) case is equal to 1,330. The third graph, depicted in
green, represents bars which indicate percentage of alpha helical/beta sheet (a and b, respectively)
present at any point of the positional alignment (clearly, having a maximum value at the extension
of SSE studied). At the lower part of this figure, one can observe the consensus sequence of the
SSE structurally aligned. Comparing this consensus sequence to the Chou and Fasman propensity
tables for alpha helices (in a) and beta strands (in b), one can see very high coincidence of amino
acid types and ranking

prove correct the hypothesis that motivated this work and also show the importance
of the EP parameter in constructing the appropriate nano-environment for each type
of SSE.

The nano-environment of the SSE has shown that a composite “signal” is identi-
fiable, containing a variation in average property values for accessibility, cross link
order, cross presence order (the latter two properties related to packing and described
in details in BlueStar STING manual), rotamer type and electrostatic potential cal-
culated at the alpha carbon atom. Once again, the electrostatic potential is present as
a major contributor to composing the appropriate nano-environment.
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12.5 Case Study: Electrostatic Potential as a Possible Missing
Clue in Considering Causes for Onset of Amyotrophic
Lateral Sclerosis Disease in Patients with Mutated
Superoxide Dismutase Enzyme

The amyotrophic lateral sclerosis disease belongs to a group of disorders known as
motor neuron diseases,which are characterizedby thegradual degeneration anddeath
of motor neurones [72–75]. Approximately 10% of the cases are genetically related
and are inherited in an autosomal recessivemanner, inwhich case the disease is named
familial ALS or FALS. Only 20% of FALS are directly linked to mutations found
in superoxide dismutase (SOD1). To date, around 100 different mutations have been
cataloged and structures reported. In the PDB (November 2013), there are 109 SOD1
structures from homo sapiens, 42 of them showing SOD1with mutated residues. The
SOD is a dimeric structure and its optimal functioning depends ultimately on how
well two monomers are bound. Molecular dynamics studies have shown that the
SOD1 mutants where the alanine (at position) 4 was substituted by valine (the most
frequently found mutation in an aggressive form of FALS), is less stable in terms
of maintaining its dimeric form and is destabilizing the metal-binding site [76],
eventually leading to a misfolded enzyme state. Since it was already known that the
SOD1 uses electrostatic attraction to achieve faster than diffusion limited substrate
approach and recognition, exploring even further the electrostatic component for both
stability- and substrate-related issues was somehow obvious and needed. Having
precalculated the electrostatic potential values at crucial points of protein and/or
mutant sites (amino acid residue atoms and surfaces), we used the BlueStar STING
and its module MSSP (displaying aligned multiple structures single parameter) to
compare wild-type and mutated structures. Our objective was to obtain more details
on how aminor change such as amutation of alanine in valine (close to theN-terminal
of the SOD1) could cause onset of such a devastating disease and what is the role of
electrostatic forces in this complex event.

The MSSP module displays the structurally aligned wild-type and mutant struc-
tures in the STING’s structure window as well as the corresponding sequences
(aligned following the structural alignment of the two chains) in the sequence win-
dow. In addition, the MSSP displays in a Cartesian plot the values of selected
attributes aligned so as that the sequence of points corresponds to the alignment
of the two structures. Any departure of values of selected properties of the two struc-
tures could be easily spotted and then analyzed. To get a comparison of the wild-type
and mutated structures, we used first 1HL5 and its chain A (wild-type SOD1), and
1UXM, chain A (the SOD1 mutated structure at position: A4V), as shown in the
upper panel of Fig. 12.8, in red and blue, respectively. Only the EP@surf values
did present certain discrepancies among the two aligned structures, and in several
regions, however, they were not very significant.
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Fig. 12.8 The BlueStar StingMSSPmodule output. Electrostatic potential calculated at the surface
(EP@surf) of the nearest amino acid residue for 1HL5.pdb, upper panel (wild type, in red) and
1UXM.pdb (mutant, in blue) and 1SPD.pdb, lower panel (wild type, in red) and 1N19.pdb (mutated
structure, in blue)

The second attempt, shown in the lower panel of Fig. 12.8, yielded more peculiar
results; namely, we used the pdb structure 1SPD (shown in red) and its chain A (wild-
type SOD1,) and 1N19 (shown in blue), chain A (the SOD mutated structure: A4V
but also containing substitutions of its two free cysteine residues: C6A and C111S).
The two cysteines were modified to avoid auto oxidation of their sulfur atoms. As
one can easily observe, themutated structure has a dramatic decrease of EP@surf at a
number of positions, nevertheless, remote to the site of the mutated alanine (position
number 4). Amore thorough inspection of amino acid residues which suffered a great
modification in value for their respective EEP@surf reveals that they are involved
and/or very close to the metal-binding atoms (shown at Fig. 12.9).

One could clearly observe that the mutated structure is describable by the loss
of a good portion of the electrostatic potential value at some residues located close
to the metal ions. Whether or not this feature is related to the fact that the mutant
structure has been reported to bind only 30% of metal ions as compared to the
wild type, and also why we did not observe such behavior in other pairs of wild-
type/mutant alignments, remains to be clarified. There are, however, a number of
possible factors to be additionally considered in the analysis of this result such as the
space group of the compared structures, monomer interfaces, contacts established
amongmonomers, etc. In any case, the value of having the EP strength calculated and
compared at specific sites in protein structures is undoubtedly high when considering
structure/function relationship.
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Fig. 12.9 Structural alignment of 1SPD_A (wild-type SOD1) and 1N19_A (A4V SOD1mutant)
with emphasis on the Cu (upper left) and Zn (lower right) positions. Both the Cu and Zn atoms
were displaced in the mutated structure, which could be a consequence of displacement of histidine
residues at position 46 and 71 as well as aspartic acid at positions 83 and 124, exactly the ones
which lost a good part of their electrostatic potential strength in the mutant

12.6 Conclusions

In this work, we purported the idea that biomolecules, and especially proteins, are
especially engineered to realize a nano-environment suitable to their structural and
functional properties. For instance, the specificity of enzymes is related to the com-
position and characteristics of substrate-binding residues. Such nano-environment
allows very different substrates to bind and then be processed by the same set of
CSR in different enzymes (belonging to the same family), undergoing exactly the
same chemical transformation (normally described using the enzyme’s EC nomen-
clature). Likewise, the building blocks of ordered protein structures—the secondary
structure elements (SSE)—such as helical constructions and beta pleated sheets, are
also inserted into very specific nano-environments which are defined both by the
surrounding amino acid residues as well as by those of the SSE itself. For each SSE,
there is an appropriate nano-environment which in turn would not be suitable for any
other SSE type.

In this context, the electrostatic potential has proven to be a valuable asset for
establishing the relationship between protein structure and function. This physico-
chemical property has been used for the past four decades as the singlemost important
factor, especially when charged interactions were considered in the nano-universe of
biological macromolecules. More recently, the EP has gained adequate space also in



12 Using Structural and Physical–Chemical Parameters … 251

comparative studies, which aim not only at describing biological events qualitatively
but also at estimating them quantitatively.

Our studies were centered on the role of the EP in determining the function of
protein districts, and on the relationship of structural properties (which includes EP)
to the functional behavior of enzymes and proteins in general. Furthermore, we have
established a road map for the analysis of the constitutional participation of different
structural, physical, and chemical properties in composing complex “signals” which
we described here as a perturbation in average values of composite attributes char-
acterizing the vicinity of functional protein districts. As it was shown, all districts
considered here (protein interfaces, catalytic sites, and secondary structure elements,
as well as their slight variations), do include as a major constitutive component the
electrostatic potential built by all participating and surrounding residues. To a differ-
ent extent, EP was shown as a crucial element for protein specificity and interfacing
and in the case of nano-environment characterization for CSR.

The single case study we present here opens a path for similar applications: we
wanted to understand the intrinsic mechanistic and dynamical details crucial for
explaining the onset of a particular disease, FALS.

Our future research perspectives revolve around the identification of the charac-
teristics of the nano-environments specific for the protein–DNA and protein–drug
interfaces with a wide spectrum of applications.
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