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INTRODUCTION

Atom and residue contacts have been used in a wide

range of studies involving proteins and other biomole-

cules. Its correct and precise assignment comprise the

touchstone of the most important structural analysis

algorithms, which should be able to perform: packing

calculations,1–4 functional similarities,5 evolutionary

relationships,6 topological classifications,7,8 structural

alignments,9 structural assessment,10 protein structure

prediction,11 threading experiments,12,13 network con-

tact analysis,14–16 empirical potentials,17–19 thermody-

namic stability previews,20 folding inferences,21,22 pro-

tein–protein and protein–ligand interactions,23 and so

forth. Here we will focus our attention on some meth-

ods that underlay contact characterizations in most of

these applications.

Perhaps as diverse as these broad applications are the

forms that a contact may be defined. The classical and

simplest method is through the establishment of thresh-
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ABSTRACT

In this study, we carried out a comparative analysis between

two classical methodologies to prospect residue contacts in

proteins: the traditional cutoff dependent (CD) approach and

cutoff free Delaunay tessellation (DT). In addition, two alter-

native coarse-grained forms to represent residues were tested:

using alpha carbon (CA) and side chain geometric center

(GC). A database was built, comprising three top classes: all

alpha, all beta, and alpha/beta. We found that the cutoff value

at about 7.0 Å emerges as an important distance parameter.

Up to 7.0 Å, CD and DT properties are unified, which implies

that at this distance all contacts are complete and legitimate

(not occluded). We also have shown that DT has an intrinsic

missing edges problem when mapping the first layer of neigh-

bors. In proteins, it may produce systematic errors affecting

mainly the contact network in beta chains with CA. The

almost-Delaunay (AD) approach has been proposed to solve

this DT problem. We found that even AD may not be an ad-

vantageous solution. As a consequence, in the strict range up

to 7.0 Å, the CD approach revealed to be a simpler, more

complete, and reliable technique than DT or AD. Finally, we

have shown that coarse-grained residue representations may

introduce bias in the analysis of neighbors in cutoffs up to

6.8 Å, with CA favoring alpha proteins and GC favoring beta

proteins. This provides an additional argument pointing to

the value of 7.0 Å as an important lower bound cutoff to be

used in contact analysis of proteins.
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old distances. For two given different points or sites {i,j}

in the atom or residue set, i will be in contact with j if

the latter is inside of a sphere centered in the former

with radius r, called cutoff. The real challenge is how to

optimize the process of selecting the right cutoff. The lit-

erature offers a wide range of options: 3.8,24 4.5,25

5.0,26 5.5,27 6.0,22 6.5,28 7.0,15 8.0,29 and 9.06 Å. De-

spite important attempts to rationalize these choices to

certain contexts,28–32 in most cases it seems that the

values were quite arbitrary. Probably they were estab-

lished mainly in order to satisfy optimization of the data

processing in each particular case.

There are many other methods that use this traditional

cutoff approach as a basis for their implementations.

One of them adjusts the maximum distance to the length

of the sites (generally, the van der Waals radius), by tak-

ing into account the radii of i and j plus a fix range r in-

between.33 Making r small enough is a way to try to

consider only the first-order contact (the closest layer of

neighbors). Again, the problem is the choice of a reason-

able value for r. In general, a value in the range from 0.6

to 3.0 is chosen.6,33–36 The contacts may also be

weighted by some function, representing a contact

area,37 an energy potential,14 an Euclidean distance,8 or

some type of normalization25 as implemented by the ra-

dial distributions functions.18,38 Additionally, these con-

tacts may be seen not only as a pairwise collection of

sites. It is possible to extend it to n-tuples, being com-

mon to form three39 and four-body contacts.40 There

are also other more complex forms to assign contacts,

like the occluded surface packing (OSP) metric,2 the

small-probe contact dot method,10 and the relative con-

tact order (CO).22 But, apart some divergent details, all

of these techniques make explicitly or implicitly (in gen-

eral through a probe radius) use of a cutoff distances.

Furthermore, contact functions may handle the transi-

tion of cutoff in a discrete or continuous form. For the

first, the contact is counted in an all-or-nothing fashion,

generally using an unit step function.28 In this definition,

the contact list is susceptible to slight changes in the coor-

dinates of the points at the limit of cutoff. An alternative

approach is to smooth this transition state by a sigmoidal

function,41 resulting in a fractional (or continuous) num-

ber of contacts. In the empirical potentials context,

Maiorov and Grippen42 have shown that in spite of this

smoothening be useful for the comparison of homologous

structures, when extended to any protein set the discrete

contact functions correlates linearly well with the continu-

ous form (correlation coefficient of 0.997).

Yet another mode of assigning contacts in protein is

through Voronoi43 and Delaunay tessellations (DTs).44

Its utilization in proteins was pioneered by the historical

works of Richards1 and Finney45 in volume and packing

calculations, and it has been growing in recent years,

through numerous other applications.46 We can define

tessellation as a form of tiling a D-dimensional space.

For an Euclidean space Rd, it implies in the possibility of

using a collection of convex polytopes (the generalization

term for any dimension of our more familiar ‘‘polygons’’

in 2D) to fulfill a region with no overlaps and no gaps.

This strict fulfillment allows tessellation to capture special

relationships among the sets of points. Voronoi and DTs

are two correlated types of tiling that, following exact

geometric criteria, yield the closest connectivity informa-

tion about the neighborhood of the points. In proteins,

the DT will result in a polyhedrization of the points so

that all traced contact will be represented by edges and

all sites (atoms or residues) by vertices.

It is common to classify contacts in cutoff dependent

(CD) and cutoff free. In the former the cutoff parameter

is an essential requirement for the definition of contact,

as in the traditional contact approaches described earlier.

Cutoff is also used to infer the energy of contacts in mo-

lecular simulations methods, especially for the truncation

of long-ranges forces.47 Conversely, the latter does not

require the cutoff for the characterization of contacts.

The DT, while a mathematic abstraction, is an example

of cutoff free method, given that it is defined in a pure

geometric ground where a threshold limit is unnecessary.

Another instance of contacts that can be thought as cut-

off free is when the distance threshold is set as infinity. A

distance dependent energy function may weight the con-

tacts so that devaluates the furthest points. The Veloso’s

occlusion method is an example of such strategy.14 Two

sites are in contact if there is no intervening site in-

between, that is, if they are not occluded by others. An

energy function is used to depreciate long, nonoccluded

contacts. In molecular dynamics, the Ewald techniques48

used mainly to measure the Coulomb energy of electro-

static contacts may also be assorted as cutoff free.

The contacts in proteins may yet to be categorized by

the granularity of the points.49 In the fine-grained mod-

els, the sites are conceived at atomic level, producing a

more detailed (but more complex) representation of the

protein. This fine granularity may also be utilized to map

contacts at residue level. The most common approach is

to assume that two residues are in contact if any of its

heavy atoms are close enough.26 In some models, the

choice of heavy atoms may be more strict.50 Others

make use of statistics over the collection of closest atoms

to attribute a weight to its residues in contact.25 Coarse-

grained models, on the other hand, may be used to lower

the complexity of the system.49 It is possible to simplify

the residue presentation by designating one representative

point, called centroid, from where the contact calcula-

tions are performed. Usual choices for representative

points are: alpha carbons (CA),29,31 beta carbons

(CB),51 geometric center (GC),28 or barycenter (BC)52

of the side chains (that may include or not some atom

of the backbone).

In spite of all diversity of above mentioned contact

definitions, we can infer here a common objective for
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most of them: to map the presence or the location of the

sites in a given space aiming to extract or to explore the

underlying preferences (if any) in its spatial distribution.

Important to this general definition is the realm of the

contact concept, in special its terminological differentia-

tion from interaction. As the etymology of the word sug-

gest, interaction concerns to some action among agents

in response to some type of mutual force. This force may

be real as in the Coulomb interaction or apparent as in

the case of hydrophobic ‘‘interaction,’’ which may be

regarded as a side effect of the entropic behavior of the

system. Contact, as aforementioned, relates only to the

presences and spatial distribution of the sites. Hence, if

in a given system there are interactions among their con-

stituent elements then it is expected that interactions will

affect the components in someway, imposing some type

of observable order or preference in-between. If (ideally)

there are no interactions, it would be possible to calculate

the contacts yet, but in this case it is expected that they

would have a more random profile, without any apparent

order or preference.

The correct identification of the first layer (or order)

of neighbors is of crucial importance in many types of

contact research. For instance, in the evaluation of em-

pirical potentials, which intend to extract or to infer the

relative energy of interactions from the statistical profile

of contacts, in an approach generally recognized as an

inversion of the Boltzmann law.17–19 For these knowl-

edge-based potentials, the first layer of neighbors may

have a determinant role, because it will be more deeply

affected by interactions, inasmuch as its influence rapidly

decays in direction to high order contacts (in highest

layers). Hence, it is generally accepted that the profile of

the closest contacts contains more useful information

about possible interactions. Other example of the rele-

vance of the correct isolation of the first layer of neighbors

concerns to the role of packing in the protein folding.

There is an intense debate in the literature1–4,50,87,88

about if there is or not a ‘‘packing code’’ ruling the

hydrophobic residue aggregation when protein chain col-

lapse towards its compact native state. Certainly, a reli-

able determination of the first layer of neighbors may be

a mandatory procedure in approaching this question,

given that packing involves exclusively residues in direct

contact.

In this work, we are proposing to scrutinize some im-

portant questions, crucially dependent on contact defini-

tions, with the explicit aim to best characterize the first

layer of neighbors: How these methodologies may influ-

ence the contacts statistics? How the choice of the cent-

roid type may change contact definitions? Is there a way

to define the preferential cutoff that might be considered

more appropriate than others? In addition to the previ-

ous challenge, we also wanted to compare the CD meth-

ods with the cutoff free approaches, such as the Voronoi/

DT.

As these methodologies compose the base for impor-

tant applications used today in structural bioinformatics,

it is of fundamental importance to know about their idi-

osyncrasies, their limits, their divergences, and in which

conditions they may bias the results. Here, we will be fo-

cusing on one representative method of each principal

class of the contact definitions described above. We have

examined the relationships between the traditional CD

technique and the Voronoi/DT, at the level of residues,

having as centroid the alpha carbons (CA) or the side

chain GC. We have seen how these contact definition

approaches behave when applied to three groups of 91

non-sequence related proteins: all alpha, all beta, and

alpha/beta as defined by the SCOP classification.76 We

verified in preliminary tests that alpha1beta class gener-

ate outputs that behaved as a mix of alpha and beta pat-

tern, so we will not present this result here. Indeed, the

alpha1beta class is formed by segregated regions of heli-

ces and sheets, and is expected that it have a contact pat-

tern that is approximately a sum of alpha and beta iso-

lated classes. The remaining SCOP classes were also not

considered. As a case study, we have analyzed how these

methodologies recognize the structured neighborhood of

the first-order contacts. Some intriguing results emerged

from these comparisons, concerning not only to the top-

ological fundaments of residue packing, but also to the

applicability of DT and related techniques in proteins.

METHODS

Proteins sets

Thereafter, we will call ‘‘alpha’’ and ‘‘beta’’ any helix

and sheet protein secondary structure elements, respec-

tively, independent of subtype classifications. Hence,

included in alpha are, for example, these known helices:

a-helix, 310-helix, p-helix, and the rarer left hand helix.

Through PDB54 advanced search engine and

STING_DB,55 we composed three sets (ALPHA and

BETA and ALPHA/BETA) with equal sizes, sampled from

SCOP.53 As STING_DB uses much more stringency

annotation (coincidence of DSSP,7 STRIDE,56 and PDB

annotation both in length and secondary structure ele-

ment annotation) we used only DSSP as the filtering

agent in order to get more structures into our data mart.

All these proteins were filtered after applying the follow-

ing general selection criteria: X-ray resolution less than

2.0 Å, R-Work less than 0.2, sequence identity less than

30%, and chain length between 50 and 600 amino acids.

An initial search with these parameters found, at Novem-

ber of 2007, 248 proteins for ALPHA and 314 for BETA.

To enhance the secondary structure signal in both sets,

we checked its relative assignment according to DSSP.7

For ALPHA, we accepted those that have more than 35%

of alpha content and less than 12% of beta content. For

BETA, in addition to the alpha content had less than
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12%, we imposed that the relative number of residues in

beta had at least two times more than that in alpha, and

a nonstructured content less than 65%. These values

were chosen after several tests which yielded less than the

desired number of structures for further analysis. The

cardinality of our set was reduced to 158 for ALPHA and

148 for BETA, at this stage. For ALPHA/BETA we started

with a set of 554 proteins. No restriction was imposed to

its relative secondary structure composition.

Improving the PDB content

To clean and filter the PDB content of the data mart

that we extracted for analysis in this work, we used the

PDBEST package,57 a tool in development by our group

that first accesses and then assesses the annotation quality

of PDB files. The PDBEST is composed by a group of

PERL scripts that apply a set of rules, defined by the

user, on the original PDB files and releases them cleaned

and filtered. To compose our PDBEST data the following

rules (in high level language) were applied to each PDB

file in the ALPHA, BETA, and ALPHA/BETA sets: detach

chains; re-enumerate chains, residues and atoms; exclude

chains with the same sequence in SEQRES tag; delete

chains with residues missing atoms; exclude chains whose

residue names are not standard amino acids (exception

to selenomethionine); if there are atoms with more than

one occupancy, choose that with the larger probability; if

there are models, get the first; if annotation error in

chain, residue or atom fields is detected, correct or warn

about it. In the end of this process, the ALPHA and

BETA sets were equalized in 182 proteins, 91 for each

(Table I). The ALPHA/BETA set has also 91 chains and it

was manipulated with intention to generate a chain

length distribution close to ALPHA and BETA set.

A statistical summary of the quality of our data is

shown on Figure 1. A complementary way to assess the

homogeneity of our databases is to verify the surface/vol-

ume distribution in ALPHA, BETA, and ALPHA/BETA

sets. This is also a way to certify that all sets have statisti-

cally the same globular character. Chothia and Janin58

demonstrated, in an approximation to solid bodies of

similar shapes, that the relation between the solvent ac-

cessible surface area (As) and molecular weight (M) may

be given by:

As ¼ kaM
d ð1Þ

where ka and d are constants. They found ka � 11.1 and

d � 0.70. The latter was assumed to be close enough to

2/3 as expected by a perfect sphere. We modified Eq. (1)

to give a surface (As) to volume (V) ratio as a function

of the number of residues (chain length) n:

As

V
¼ kbn

�1
3 ð2Þ

The linear regression applied to a log–log transforma-

tion of Eq. (2) for ALPHA gave intercept 1.00 � 0.24

and slope 20.36 � 0.04, for BETA intercept 0.95 � 0.22

and slope 20.36 � 0.04, and for ALPHA/BETA intercept

0.82 � 0.16 and slope 20.34 � 0.04, all at 0.95 level of

confidence. We saw that the regression parameters for all

sets were homogeneous.

Table I
Protein Structure Databases

Database Proteinsa

ALPHA (91 chains) 1LMB3, 1B0N1, 1M451, 1VRK1, 1A7W1, 1ALV1, 1AMZ1, 1BGF1, 1DK81, 1DNU2, 1EYV1, 1FC31, 1FT51, 1G331,
1G4I1, 1GPQ2, 1GV21, 1HBK1, 1HBN2, 1HE11, 1I2T1, 1I8O1, 1J7Y2, 1JFB1, 1K0M1, 1KG21, 1KQF3, 1L9L1,
1LJ81, 1LKP1, 1M1N2, 1M4R1, 1M8Z1, 1M9X2, 1MTY2, 1MTY3, 1MXR1, 1MZ41, 1N1J1, 1N1J2, 1N2A1,
1NOG1, 1O081, 1O831, 1OOH1, 1OR01, 1OW41, 1OWL1, 1PBW1, 1PPR1, 1Q081, 1QGI1, 1QMG1, 1QOY1,
1R8S2, 1RRM1, 1SQ21, 1T6U1, 1T7R1, 1TX41, 1TZV1, 1TZY2, 1TZY4, 1VDK1, 1VLG1, 1W531, 1WDC2, 1WKU1,
1WOL1, 1WPB1, 1WVE2, 1K961, 1YOY1, 1YYD1, 1Z101, 2ABK1, 2BAA1, 2CCH2, 2CIW1, 2CZ21, 2EUT1, 2GC44,
2GKM1, 2I5N1, 2I5N3, 2I5N4, 2INC1, 2INC2, 451C1, 5CSM1,1BZR1

BETA (91 chains) 1JIW2, 1F582, 1SBW1, 1TGS1, 1A121, 1BHE1, 1C9O1, 1CRU1, 1EAJ1, 1EUR1, 1EUW1, 1F8E1, 1FLT2, 1FNS1, 1FNS2,
1GQ81, 1GSK1, 1GUI1, 1HOE1, 1I0C1, 1IBY1, 1J831, 1K121, 1KV71, 1LK33, 1LR51, 1M9Z1, 1NSZ1, 1O5U1,
1O6S2, 1OFL1, 1OFZ1, 1OH41, 1PBY2, 1PMH1, 1PNF1, 1PQ71, 1PXV2, 1QHV1, 1RG81, 1RMG1, 1ROC1, 1RWI1,
1SFD1, 1SQ91, 1SR43, 1SVB1, 1SVP1, 1T2W1, 1T611, 1T612, 1TCZ1, 1TUD1, 1UAC2, 1UMH1, 1USR1, 1UV41,
1UWW1, 1UXZ1, 1V051, 1V6P1, 1VPS1, 1WD31, 1XQH1, 1Y0M1, 1Y7B1, 1ZE31, 1ZE32, 1ZGO1, 2A2Q3, 2ADF2,
2ADF3, 2AG41, 2AGY1, 2BCM1, 2DJF1, 2FCB1, 2FGQ1, 2FK91, 2GC42, 2GC43, 2H3L1, 2HS11, 2IAV1, 2IVZ1,
2J1N1, 2O8L1, 2POR1, 2SIL1, 3EZM1, 1K5C1

ALPHA/BETA (91 chains) 1F2T2,1ABA1,1VSR1,1JW92,1I9C1,1A4Y2,1AY71,1AY72,1C1Y2,1CCW1,1CSE2,1DTD2,1F602,1GMX1,1H4X1,
1H751,1J3A1,1JF81,1GV81,1MJH1,1OGD1,1QTN2,1QZM1,1R0R2,1RLK1,1SCJ2,1SRV1,1U0S1,1U0S2,
1UC71,1UGH2,1VC11,2SIC2,1QNT1,1G2I1,1IM51,1J2R1,1C1Y1,1DF71,1FBT1,1IO01,1JUV1,1K1E1,1NQU1,1NXJ1,
1QTN1,1R2Q1,1SC31,1SHU1,1SVI1,1WDJ1,1JFX1,1JAY1,1IU81,1LK51,1M5W1,1UOK1,1EDG1,1EQC1,7A3H1,
1DXE1,1GPE1,3GRS1,4UAG1,1NZY2,1DCI1,1QF51,1TCA1,1CVL1,1B4Z1,1HX01,1JAK1,1I9C2,1KQP1,1KDG1,1LWD1,
1J181,1OCK1,1OI71,1P1J1,1GQN1,1T4B1,1TA32,1T9H1,1UJM1,1UMK1,1CCW2,1CSE1,1NMM2,1SCJ1,1U7P1

aBrookhaven data bank codes concatenated with the chain ID number, conform the order of its occurrence in the PDB files.
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The volume and surface was calculated by Gerstein

programs59,60 ‘‘calc-surface’’ and ‘‘calc-volume,’’ with the

traditional Richard’s method B1 and also adopting Rich-

ard’s radii.

Contacts

The definition of contact that we have adopted here

was essentially geometric and not energetic. As aforemen-

tioned, we are working only with contacts, not with

interactions. It involved the determination of a set of

neighboring points belonging to a space around one

given referential point or centroid, with the Euclidean

distances used as a weight. All contact data were defined

at the residue level, but a low-resolution approach was

adopted: each residue was characterized by one centroid.

We compared two types of referential points: by alpha

carbons (CA) and by side chain geometrical centers

(GC). The latter was reduced to the coordinates of alpha

carbon in the case of Glycine.

Cutoff dependent contacts––traditional
approach

We implemented and then analyzed the CD traditional

approach: a contact is defined between any given pair of

residues {i,j} if the Euclidean distance between their cent-

roids was less than or equal to one arbitrary cutoff dis-

tance. For a more mathematical description, see the

Methodologies section at the Supplementary Material.

Cutoff free contacts––Voronoi diagrams
and Delaunay tessellation

The Voronoi diagram (VD) is a geometric construct

named in honor to the Russian mathematician Georgy

Voronoi (1868–1908) who employed in 1908 the n-

dimensional case.43 The basic ideas in low dimensions

can be traced back to works of Dirichlet,62 Gauss,63 and

Descartes.64 See also references 65 and 66.

In 3D, VD will partition the volume associating a pol-

yhedron to each site, which is called a Voronoi cell. Each

face of these polyhedrons will comprise planes that bisect

the line linking a site to each of its near sites, mapping a

neighborhood with the closest contacts. For a more

mathematical description, see Aurenhamer68 in the

Methodologies section of the Supplementary Material.

One construct related to VD is the DT44. Voronoi in

his celebrated paper43 of 1908 had already realized that

the dual graph of his diagrams on lattices seem to have

important characteristics. A dual graph is obtained by

assigning a vertex to each region of the target graph and

making vertices links if and only if those regions share

an edge61 [Fig. S1(g) at Supplementary Material].

Another Russian, Boris Delaunay (1890–1980), extended

the original work of Voronoi from lattices to irregularly

placed sites through an ingenious method: in 3D, four

Figure 1
The assessment of ALPHA, BETA, and ALPHA/BETA data sets. (a) The

DSSP assignment for secondary structure in ALPHA is in blue (dark

gray), BETA is in orange (light gray) sets, ALPHA/BETA is in red

(median gray). The alpha content in ALPHA had a mean and standard

deviation of 61.6% � 11.6%, with min/max of 36.0%/86.0%. The beta

content in BETA had a mean and standard deviation of 46.6% � 7.9%,

with min/max of 28.0%/66.0%. The alpha content in ALPHA/BETA had

a mean and standard deviation of 36.0% � 9.6%, with min/max of

14.0%/55.0%; the beta content in ALPHA/BETA had a mean and

standard deviation of 22.1% � 7.8%, with min/max of 6.0%/48.0%.
(b) Distribution density of chain length in ALPHA, BETA, and ALPHA/

BETA sets, in blue (dark gray), orange (light gray), and red (median gray),

respectively. The mean and standard deviation in ALPHA was 210 � 125

residues, with min/max of 61/522 residues, totalizing 19163 residues. The

mean and standard deviation in BETA was 221 � 122 residues, with min/

max of 59/534 residues, totalizing 20,127 residues. The mean and standard

deviation in ALPHA/BETA was 230 � 141 residues, with min/max of

51/587 residues, totalizing 20,894 residues. All sets had very similar chain

length distributions. The homogeneity of the center tendencies for the

three sets was calculated by nonparametric Kruskal-Wallis86 test, giving

P-value of 0.63. Kolmogorov-Smirnov80 test assured the goodness-of-fit

between ALPHA and BETA distributions with P-value of 0.31, ALPHA and

ALPHA/BETA distribution with P-value of 0.41, BETA and ALPHA/BETA

with P-value of 0.87. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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sites compose a Delaunay tetrahedrization if and only if

the circumsphere of each polyhedron is empty of other

sites. Applying this algorithm over all sites will tessellate

a volume by tetrahedrization, with the remarkable prop-

erty that only the nearest neighbor to each point will be

connected by an edge.

Here we used the program ADCGAL69 to compute DT

and almost-Delaunay (AD) contacts. We have also used

the same equations (vide the Methodologies section at the

Supplementary Material) than those utilized in the CD

methodology to compose the DT/AD contacts statistics,

but considering only the edges returned by the latter.

RESULTS AND DISCUSSION

First, we would like to discuss comparatively some of

the main contact properties and intrinsic problems of the

two methodologies: CD and cutoff free DT.

Cutoff dependent properties

One of the greatest advantages of the traditional CD

method is that it makes a complete scanning of all com-

binations for pairwise edges inside the search spheres

built by cutoff (r) and centered in each site. So, if there

are n vertices or sites delimited by these spheres, there

are C(n,2) edges combinations counted by CD, what

gives O(n2) contacts [Fig. 2(a)]. In a volume with near

uniformly distributed points the number of sites raises

with O(r3). Hence, the number of contacts as a function

of cutoff will be of O(r6). This is not an exponential, but

it is a polynomial of high order, and it is expected that

the number of contacts may grow vigorously with r

(although we have evidences that the coefficients for the

highest exponents may be very small, data not shown).

This is an estimate for infinity condition without border

limits. In well-packed proteins, insofar as r increases, the

search spheres extrapolate all coordination shells until

reaching the last atoms in the boundary region. Sites

more buried feel this border effect in larger cutoff values

than sites near the surface, but the general effect is that

the increase in the contact number will be contained.

The result is a sigmoidal cumulative distribution asymp-

totic to C(n,2). Naturally, given the symmetry of the

sigmoidal curves, its density distribution (first derivative)

tend to be Gaussian like but only in the shape, because it

continues to be a polynomial now with O(r5).

Emphasizing, the best quality of the CD method is that

it is exhaustive or total. It enumerates all contacts that can

exist for a given cutoff. This seems ideal for a global vision

of the packing, but it is not so efficient for an unambigu-

ous analysis of local arrangements. If the goal is to count

Figure 2
Cumulative coordination as a function of the number of residues (chain length) in 91 proteins of ALPHA CA set. The ordinate represents the

total neighbors in a sphere of 28.0 Å, centered at CA. The numbers at the upper left corner indicate the fitting curve coefficients with

corresponding standard errors. For both regressions, the fitting curve was forced to pass through zero. (a) Coordination for CD contacts is

well fitted by a parabola. (b) Coordination for DT contacts is linear. The slope indicates the average coordination number in 28.0 Å as

13.9 � 0.1 neighbors per residue in ALPHA CA, at 0.95 level of confidence. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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the contacts only in the first coordinate shell (the first

layer of neighbors), for example, CD does not offer an

easy way of prospecting it without the risk of confronting

with both false-positive (occluded and counted) and false-

negative (not-occluded and not-counted) contacts. The

usual approach is to try to find a statistically optimum

cutoff that minimizes the possibility of this risk, observing

the contact density behavior along the cutoff.

Manavalan and Ponnuswamy29 were likely to be the

first to endeavor in this direction. They found that

hydrophobic residues represented by CA atoms in a set

of 14 proteins were maximally clustered between 6 and

8 Å of cutoff, suggesting 8 Å as an ideal value. Afterward,

Miyazawa and Jernigan28 looking at the radial density

profiles of interior residues, whose location was up to

7 Å from the protein GC, evinced a peak at the shell

between 5.0 and 5.5 Å, with a subsequent valley about

6.5 Å. The latter was elected as the ideal cutoff for the

empirical potential analysis that they were carrying out

using a special set of 42 proteins. We cannot leave unno-

ticed that the residues in their model were reduced to

GC of side chain atoms (CA for Glycine). Following a

similar methodology, Zhang et al.30 estimated their best

cutoff as 6.0 Å, but computing the residue contacts by

the distances between their heavy atoms, from a selected

collection of 89 proteins. Furuichi and Koehl31 tried to

find the ideal cutoff for a set of 125 nonhomologous

proteins contrasting the effects of the chain lengths in

the contact profiles. Using a CA residue representation,

they built a reduced database with 68 proteins, dividing

it into two subsets S (Short) and L (Long), where S had

proteins with less than 130 residues and L the remaining

ones. The first interesting fact that they identified was

that the two distributions were reasonably similar up to

10.0 Å, indicating that short range interactions were in-

dependent of protein size. Other fact is that they have

observed that the predictive power of their empirical

potential in the two sets S and L diverged about 7.0–8.0 Å.

In face of this, they have suggested the ideal cutoff as

8.0 Å. More recently, Kamagata and Kuwajima32 intro-

duced an experimental ground in the optimum cutoff

definition. They verified a surprisingly high correlation

between the number of contact clusters (Nc) and the log

of intermediate rate constants in the kinetics analysis of

folding from 12 non-two-state proteins. In the cluster

definition, they used a fine-grained approach establishing

that two residues are in contact if any of their heavy

atoms were close enough. They tested the influence of

the variation of cutoff on the changing of linear correla-

tion coefficients, and found that no meaningful alteration

was found for cutoff beyond 5.5 Å.

Delaunay tessellation properties

Cutoff free techniques like DT can reduce the neigh-

borhood ambiguity problem found in CD as a conse-

quence of their exact geometric definition. For most

cases, there is a mathematical guarantee that contacts in

DT are occluding-free, because the bisection or separators

in VD are constructed between the closest pair of sites,

which practically vanishes the DT edges crossing interme-

diate sites. Exceptions could occur for sites near the sur-

face, with a region without neighbors. In certain configu-

rations, edges can be traced between those sites that were

in a quasi-linear condition and stay partially occluded,

with the respective center of the common sphere near

infinity. But these cases tend to be rare and may be

circumvented by some usual procedures like solvation.1

It is precisely that geometric appeal and apparent non-

ambiguity some of the reasons that VD/DT have been

largely used as a efficient method to identify nearest

contacts in proteins.46 And the method seems to be

better suited specially when the target is the first layer of

neighbors, the major difficulty of CD techniques.

There is an interesting property of DT when the num-

ber of edges is analyzed by distances for sites in nearly

uniform distribution: regardless of the dimension, this

number tends to grow in O(n) for the average case.70 In

proteins, we could verify that this was really true. In Fig-

ure 2(b) we show a plot with 91 ALPHA CA protein set,

clearly indicating a high linear correlation, in the range

of up to 28 Å, between the number of neighbors and the

number of residues (chain length). This linearity indi-

cated that DT captured a limited number of neighbors in

the vicinity of each residue, and made the number of

contacts to be scaled up to the size of the protein.

As a consequence, its slope contained worthy informa-

tion about the protein packing characteristics, indicating

the average number of neighbors per residue at a given

distance. For our ALPHA CA data, in 28.0 Å, we see that

this average was 13.9 � 0.1 neighbors [Fig. 2(b)]. The

calculated mean for the other sets was (using the same

cutoff): BETA CA: 14.0 � 0.1, ALPHA GC: 13.4 � 0.1,

BETA GC: 13.6 � 0.1, ALPHA/BETA CA: 14.1 � 0.1,

ALPHA/BETA GC: 13.6 � 0.1 neighbors, all at 0.95 level

of confidence. Our results were very close to the value

13.97 found by Soyer et al.52 for the average number of

faces in Voronoi polyhedrons in a collection of 40 pro-

teins, where residues were represented by the side chain

barycenter.

The lines in both Figure 2(a,b) were forced to intercept

zero, given that it is reasonable to assume that with zero

residues it would expect to have zero neighbors. But, it

was possible to note that small proteins with few residues

tended to stay slightly below the fitting curve, in both

CD and DT plots. Probably, this happened because for

high cutoff value the contribution to the neighbor count-

ing for shorter proteins was smaller than for larger pro-

teins. For CD, the search spheres reach the size limit of

the small proteins faster as the cutoff value grows,

exhausting its capacity to contribute with more edges.

For DT, at high cutoff, the contribution may be given by
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sites in the surface of proteins, which also were fewer in

small proteins. Hence, the average number of neighbors

in extended cutoff has a bias dictated by the amount of

small and large proteins present into the database. As

noted by Furuichi and Koehl,31 this naturally imposes an

upper limit in the cutoff to be used, that is, the select

cutoff value must not be larger than the average radii of

the smallest proteins in the database.

To see how this fact may affect our data, we estimated

the Voronoi volume of our proteins, using the cited Ger-

stein et al. programs.59,60 We approximated these vol-

umes as spheres, to make a rude estimation of the aver-

age radii for our data mart proteins. This returned the

following basic statistics: modal 5 16 Å, mean and me-

dian 5 18 Å, min 5 10 Å, and max 5 27 Å. This alerted

us that the cutoff of 28.0 Å used before was too large to

be reliable. The volume statistic above suggested that our

cutoff should not go beyond the minimal estimative of

10 Å, constituting it an upper bound limit.

However, DT is not all problem-free. It is known that

DT is not robust to the noise in the location of the

points. There are situations where small movement of

the centroids may lead to substantially different arrange-

ment on the simplices (Fig. S2, Supplementary Material

and Refs. 82–85). DT in 3D requires, for a complete tet-

rahedrization, that all points should stay in general posi-

tion, for example, that no five points are cospherical,

because five points in a sphere admit five tetrahedra that

satisfy the empty-sphere criterion. Sites whose coordi-

nates are near these situations are sensible for DT to

small change in their position. The edges may flip with

minimal movements of the centroids, changing the pat-

tern of contacts. Note that CD also shares this problem,

but only for sites in the cutoff frontier zone; for the

remaining sites, CD is insensible to this difficulty.

A real example illustrates how serious this DT intrinsic

missing edges problem may be in protein. In Figure 3 are

shown in yellow (or light gray) all contacts found by DT

around the residue ILE 167 (in light blue or median

gray) from the all beta Endopolygalacturonase (1K5C),71

solved at 0.96 Å resolution. All residues were represented

by their alpha carbons (CA). The DT correctly identified

10 neighbors of ILE 167, but ignored two other legiti-

mate presences: the ASN 188 and CYS 190 in violet (or

dark gray). This happened because the four residues

CYS-166, ASN-188, GLN-189, and ILE-167 are near the

degenerated case, that is, they are almost in a cospherical

condition, and as the contact {CYS-166, GLN-189} was

closer than the pair {ILE-167, ASP-188}, DT traced the

former contact. There was a clear symmetry in the first

order contacts of ILE 167 that DT seemed not be able to

encompass fully. This error may be systematic, with DT

tending to omit for many residues in one strand, one or

two edges with residues in the companion strands. For

example, the {THR-136, VAL-168} contact was also

ignored because of a difference of 0.14 Å with the contact

{ILE-167, ILE-135}. Therefore, DT was not so absolutely

free of ambiguity as it is believed and often reported in

literature.52,46

Bandyopadhyay and Snoeyink67 have tried to address

this problem by what they called AD simplices. Given a

set of sites S in R2, Q � S points will comprise a set of

AD simplices AD(e) if and only if by perturbing each

site of S up to a finite threshold e the altered Q has an

empty circumscribing circle; see Figure S3 (Supplemen-

tary Material) for more details. The AD actually seemed

to be able to identify missing edges not detected by tradi-

tional DT near the degenerate position. It, for example,

detected the {ILE-167,ASP-188} and {ILE-167,CYS- 190}

contacts in the case cited earlier. We will return to this

question but before, we have to see how DT relates to CD.

Confronting cutoff dependent
and Delaunay tessellation

After describing above some of the idiosyncrasies of

both methodologies, we will now compare the way how

CD and DT prospect contacts as a function of the cutoff.

Figure 3
The first order contacts in the vicinity of residue ILE 167 in light blue

(or median gray) from the all beta Endopolygalacturonase 1K5C.71

Each residue is represented here by its alpha carbon (CA) in CPK

model. In yellow (or light gray), the 10 residues that DT made an edge

with ILE 167 are shown. In violet (or dark gray), are presented the

residues that DT was unable to recognize as neighbors. The dashed line

and respective numbers indicate the distances in Å.
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Figure 4 shows the density distribution of the number of

neighbors per residue in the range of cutoff 0.0–28.0 Å for

both CD and DT, in ALPHA set. At cutoff value about 7.0

Å, the CD profile bifurcated from DT profile. Below 7.0 Å,

the distributions were in essence the same, independent of

the residue representation. Above 7.0 Å, the CD exploded

with great variability, mainly as a consequence of the diver-

sity in the protein sizes. Note that this impressive diver-

gence is occurring with the data normalized by the number

of residues. This may indicate the existence of combinatory

process in the edges enumerations that seems to be

extremely sensible to the number of sites. It is important

to remember that the number of edges by cutoff may grow

with a polynomial of high degree.

The same data for BETA set are shown in Figure 5.

Although the bifurcation point continued to be about

7.0 Å, the differences seem to have initiated at a lower

cutoff value, around 6.2 Å. Note that in the interval

6.2 up to 7.2 Å, despite the differences, both curves were

still correlated. Certainly, the anticipation (from 7.0 to

6.2 Å) occurred as a consequence of the DT problem

already described earlier and illustrated in Figure 3.

Figure 6 shows the graphics for ALPHA/BETA set. We

also see the presence of DT missing edges problem, as

expected by its relatively higher beta content. The bifur-

cation point also seems to occur between the intervals

6.2 up to 7.2 Å.

Computing the difference between the mean curve areas

of CD and DT up to 7.0 Å, it was possible to estimate the

percentage of edges not considered by DT. The average

error was about 5.1% � 0.3% for BETA CA, 0.6% � 0.2%

for BETA GC, 1.9% � 0.3% for ALPHA CA, 0.3% � 0.2%

for ALPHA GC, 3.3% � 0.3% for ALPHA/BETA CA, and

0.4% � 0.2% for ALPHA/BETA CG, all at 0.95 level of

confidence. In spite of being low, it is important to

remember that this error may not be random. Note also

that it will affect mainly proteins rich in beta structures

due the almost flat topology of its strands, which may put

four sites in a cocircular condition.

In our point of view, the fact that these distributions

were in essence the same up to 7.0 Å had two possible out-

comes. The first was that it unified the CD and DT proper-

ties: all edges up to 7.0 Å will be complete, enumerating

combinatorially all possible contacts that can exist inside

the searching sphere (a CD property); and all edges will

also be legitimate contacts, with a geometrical guarantee to

be completely free of occlusions (a DT property). This, to-

gether with the fact that the results were independent of the

protein classes analyzed and also independent of CA or GC

residue representations, made 7.0 Å a candidate to a refer-

ential lower bound cutoff limit to be used in contacts defi-

nitions applications that want to adopt the coarse-grained

models used here. Although this lower bound is independ-

ent of the quality of the database, the upper bound is de-

pendent of the protein size distribution. So, for our data-

bases an ideal cutoff might be found in the range of 7.0–

10.0 Å. However, for CD, at 7.0 Å there is a certain guaran-

tee that contacts will be occlusion-free, but above this the

chances of getting false-contacts will increase.

The second outcome was that, as a consequence of the

single perspective, up to the bifurcation limit CD should

Figure 4
Comparative density distributions between the mean residue

coordination of CD and DT methodologies as a function of cutoff for

ALPHA set. The thick continuous line in blue (or dark gray) and

orange (or light gray) denotes the mean number of neighbors for CD

and DT models, respectively. The scatter data for all the sampling
points are shown offering a complete overview of the behavior and

variance of the data. (a) Curve patterns for ALPHA set with alpha

carbon (CA) residue representation. 7.0 Å is a bifurcation point

between CD and DT. (b) The distribution profiles with side chain GC.

We see the same bifurcation point at 7.0 Å. For both CA and GC

residue representation, the CD data present a large variability beyond

7.0 Å. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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also inherit the linearity behavior of DT. As CD is quad-

ratic by nature, it is expected that it makes a transition

from parabolic to linear model, staying essentially linear

around 7.0 Å. To check this possibility, we conducted a

model selection test using the Bayesian Information Cri-

terion (BIC)72 to evaluate if linear or quadratic behavior

was statistically more adequate to fit our CD data in

each range of cutoff. BIC returns a number that measures

the fitting quality of the model to the data. The lower

Figure 5
Comparative density distributions between the mean residue

coordination of CD and DT methodologies as a function of cutoff for

BETA set. The thick continuous line in blue (or dark gray) and orange (or

light gray) denote the mean number of neighbors for CD and DT sets,

respectively. The scatter data for all the sampling points are shown
offering a complete overview of the behavior and variance of the data. (a)

Curve patterns for BETA set with alpha carbon (CA) residue

representation. Because of the DT missing edges problem the sites near

the degenerate state are not recognized and the separation point is

anticipated to about 6.2 Å. But a bifurcation between CD and DT seems

to occur between 6.2 and 7.2 Å. (b) Distribution profiles with side chain

GC residue representation. We see the same interval where bifurcation

point occurs: between 6.2 and 7.2 Å. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 6
Comparative density distributions between the mean residue

coordination of CD and DT methodologies as a function of cutoff for

ALPHA/BETA set. The thick continuous line in blue (or dark gray) and

orange (or light gray) denote the mean number of neighbors for CD

and DT sets, respectively. The scatter data for all the sampling points

are shown offering a complete overview of the behavior and variance of

the data. (a) Curve patterns for ALPHA/BETA set with alpha carbon

(CA) residue representation. Like in BETA set, the DT missing edges

problem is also present but in minor degree. A bifurcation between CD

and DT seems to occur also between 6.2 and 7.2 Å. (b) Distribution

profiles with side chain GC residue representation. [Color figure can be

viewed in the online issue, which is available at

www.interscience.wiley.com.]
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this number, the better is the model. But, as BIC absolute

values are meaningless, we computed the relative differ-

ence D 5 BIC(linear) 2 BIC(quadratic). Positive values

for D indicate that the quadratic model is superior, and

vice-versa. Burnham and Anderson,73 as a rule of

thumb, suggested D � 10 as upper limit to assessing the

relative merits of the models, recommending D � 2 as a

suited value. Summarizing, the closer D is from zero,

more indistinct are the models, and we should select

those models with fewer parameters (if we accept the

Occam’s razor criterion). Figure 7 presents the results of

the BIC test. We can see that, for high cutoff, the better

model was in fact quadratic. From that same figure one

can clearly see that as the cutoff values decreases, a quad-

ratic dependence property was lost and a linear form pre-

vailed. At 7.0 Å, all curves were either near or below

zero. Curiously, for high cutoff values both ALPHA and

BETA seemed to have the same decay rate, with the former

being closer to linear than the latter. In a point near to

20.0 Å, ALPHA decreased its decay rate while beta contin-

ued practically unchanged. As a consequence, BETA data

reached D 5 0 earlier than ALPHA. Another surprising

result was the profile of ALPHA/BETA set. Mysteriously, it

reaches D 5 0 in a high cutoff value about 15 Å. It is not

trivial to try to explain this strange behavior, which seems

to touch subtle topological differences between the spatial

distributions of centroids in the sets analyzed. Further

investigation is necessary to clarify this point.

As noted by Bandyopadhyay and Snoeyink through

their lemma 4.1,69 this linear behavior may be a result of

the nearly uniform packing of proteins. In our view, it

constitutes also a topological signature of the first coordi-

nation shell. As a consequence, the cutoff value at 7.0 Å

may be understood as the ideal distance from where the

first-order contact is optimally separated from other

higher-order contacts in proteins. It is the best point that

put in evidence the immediate layer of neighbors. At this

moment, as we cannot formally prove this linear state-

ment of the first-order contact, we will only conjecture

that it is true based on all evidences related herein.

Is almost Delaunay a solution?

We are now in condition to assess the Bandyopadhyay

and Snoeyink solution67 to solve the DT missing edges

problem. In Figure 8, we see the plot of AD (using

threshold perturbation value of 2.0 Å and prune of edges

of 28.0 Å) against the CD and DT, for BETA with CA

representation. Interestingly, we perceived that AD was

the difference between CD and DT. This meant that, as

threshold perturbation approaches to infinity, the

DT1AD approaches to CD in the range of cutoff consid-

ered. If this is true, there is no apparent reason to prefer

the solution DT1AD in favor of CD when an ideal cutoff

is used. However, one of the advantages of AD was that

with it we could determine the more precise moment

where DT initiates the divergence from CD. We consid-

ered this point as that where half of proteins had at least

one AD edge. The resulting values were: ALPHA CA:

6.2 Å, ALPHA GC: 7.0 Å, BETA CA: 6.2 Å, BETA GC:

Figure 7
Linear against quadratic model selection test using Bayesian Information

Criterion72 (BIC) for each cutoff range. The ordinate contains the

difference between BIC numbers, D5 BIC(Linear) 2 BIC(Quadratic).

The smaller the BIC number the more adequate is the model. Hence,

positive D values favor the quadratic model. (a) Model selection test for
alpha carbon (CA) residue representation. For high cutoff, a quadratic

version is favored. Insofar as the cutoff goes down, the model was

switching to a linear version. At 7.0 Å, D is near zero for ALPHA, BETA,

and ALPHA/BETA sets. ALPHA/BETA has an intriguing behavior. Unlike

ALPHA and BETA pattern, ALPHA/BETA decays to a linear mode (D5

0) more quickly, at cutoff around 15 Å. (b) The same as in (a) applied to

the side chain GC residue representation. Again, the behavior is similar as

for the CA representation. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Protein Cutoff Scanning

PROTEINS 737



6.8 Å, ALPHA/BETA CA: 6.2 Å, ALPHA/BETA CG:

7.0 Å. This confirmed that the DT missing edges problem

occurs mainly when CA residue representation is used.

A case study: a neighborhood analysis
in proteins

Finally, we implemented a case study to analyze the

influence of the residue coarse-grained centroids CA and

GC on the neighborhood profiles. To this point we al-

ready demonstrated that CD and DT are unified up to

7.0 Å, and that we may use the simpler CD technique.

We built a cumulative scatter plot highlighted by the av-

erage number of neighbors, in the cutoff range from 4.0

to 9.0 Å (see Fig. 9). For CA representation, we could

delimit at least three regions, separated by cutoffs 5.2 Å

and 6.8 Å. The cumulative CA curves seemed to have dif-

ferent behaviors before and after this marked distances,

in ALPHA, BETA, and ALPHA/BETA sets. ALPHA/BETA

appears to inherit the pattern of ALPHA before 6.8 Å

and of BETA after 6.8 Å. For GC representation, the pro-

file was more homogeneous. At about 6.8 Å, like in CA

representation, the two mean curves of ALPHA and

BETA sets stayed very close, indicating a convergence

point. ALPHA/BETA, on the other hand, seems to fol-

lows closely the BETA pattern, but always assuming high

values, in the average.

To have a more reliable idea of the real differences
between our ALPHA and BETA sets, we decided to

explore the behavior of the central tendencies along the
distance ranges. For this, we applied both the parametric
Student t-test with Welsh74 correction for differences in

variances, and non-parametric Wilcoxon t-test75 in our
cumulative distribution of neighbors (Fig. S4 at Supple-

mentary Material). We also performed a more robust
nonparametric test as a form of ensuring the t-test
results, which is known to require normality as a precon-

dition. Indeed, it was notable that the two tests produced
well correlated curves in most of the regions. Low P-val-

ues indicated that the difference between the average
number of neighbors in the sets was statistically signifi-
cant. For CA residue representation, in the ALPHA 3

BETA, ALPHA 3 ALPHA/BETA, and BETA 3 ALPHA/
BETA comparisons, we found two sharp peaks with high

P-values in favor of indistinctness of the means/medians,
at about 5.2 Å and 6.8 Å, the same interception points

found in Figure 8(a). With GC, in the ALPHA 3 BETA
comparison, all P-value tended to remain below the arbi-
trary threshold of significance, except for a visible

broader peak around also 6.8 Å. In the ALPHA 3

ALPHA/BETA comparison, as expected, any significant

similarity between the means/medians is found, except in
very lower cutoff values. In the BETA 3 ALPHA/BETA
comparison, we see that the central tendencies had more

homogeneity between 5.0 Å and 6.0 Å, and after 7.2 Å.

Looking conjointly these data we noted that, between

the cutoff 5.2 Å and 6.8 Å, CA and GC residue represen-

tations do not agree whether ALPHA or BETA had more

average neighbors per residue. The former seemed to bias

the result in favor of ALPHA and the latter in favor of

BETA. If two different researchers had chosen one of

Figure 8
Comparison of the average number of neighbors per cutoff values between

AD solution with CD and DT. The thick continuous line in blue (or dark

gray), orange (or light gray), or light red (or median gray) denote these

averages for CD, DT, and AD models, respectively. The scatter data for all

the sampling points are not shown here, only the average number of

neighbors. In all AD the prune parameter was of 28.0 Å. These data were

collected from BETA set with alpha carbon (CA) residue representation. The

number in parenthesis in AD indicates the threshold perturbation

parameter. (a) We plotted the AD with perturbation threshold of 2 Å

against CD and DT. We see that AD appears to be a complement of DT in

cutoff less than 15.0 Å. We can see also that AD is different of zero in a

cutoff value about 6.2 Å. (b) Plot with CD, DT, and the sum of DT 1AD

with perturbation thresholds of 0.5 Å, 1.0 Å, and 2.0 Å. We see that the sum
of DT 1AD tend to yield results very similar to CD as the perturbation

threshold grows. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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these residue representations, and if they had used a cut-

off below 6.8 Å, they might reach different conclusions

about the neighborhood number profile in alpha and

beta proteins. ALPHA/BETA would contribute to distort

the data in favor of alpha if had used a cutoff below

6.8 Å, and in favor of beta if had used a cutoff above

6.8 Å. As a consequence, this difference in the number of

neighbors might affect, for example, packing inferences,

inducing contradictory results about if alpha or beta pro-

teins are more compacts. Above 6.8 Å, this ambiguity is

minimized, with both CA and GC residues representation

at least agreeing about the statistically larger average

number of neighbors in beta than in alpha. Curiously,

our CD/DT unifier cutoff number 7.0 Å stays in a region

less vulnerable to these problems of contradiction. There-

fore, this constitutes an additional argument in benefice

of the 7.0 Å as a lower bound cutoff for contact analysis

of proteins.

At last, we need to point out two of what we consider

as most important remarks. First, that we had estab-

lished here a candidate value to lower bound cutoff for

prospect contacts in proteins. As the upper bound cut-

off is dependent of the protein sizes in database, the

ideal cutoff value will be as well. Second, 7.0 Å is a

lower bound cutoff if the research goal is as complete

enumeration of the first-order contacts as possible, that

is, the reliable characterization of the first layer of

neighbors. If the interest, on the other hand, is to map

only the nearest interactions, like for example those

closer than 4.0 Å, a lower bound cutoff value will obvi-

ously not be applicable.

Limitations and perspectives

The work presented here carries intrinsically some lim-

itations and it does have equally many perspectives that

could be considered as complements, because the former

may be a motivation for the latter. So, we will comment

both conjointly.

Generating a database that contains appropriate struc-

tures, selected according to well designed filtering proce-

dure is a general problem in practically any bioinfor-

matics work. In this article, we choose to respect the

skewed protein size distribution returned from the PDB

filtering for ALPHA and BETA set, but we forced the

ALPHA/BETA distribution to follow the formers. We are

confident that the results raised by our investigation for

cutoff values up to 7.0 Å is protein size independent, as

long as this value stays in a region below the 10.0 Å limit

found by Furuichi and Koehl.31 Moreover, the smallest

proteins in the data set we created had also 10.0 Å of

approximated radius.

Other coarse-grained forms to represent residues is

also a future research target, like the beta carbon (CB)

representation; or even more fine-grained ways, like the

residue contacts prospected by the closer heavy atoms. A

deep fine-grained CD/DT model in atom level will be

computationally challenging but certainly welcome com-

plementation to our results.

Figure 9
Cumulative distribution of the average neighbors per residue as a

function of the cutoff using CD data. The thick continuous line in blue

(or dark gray) orange (or light gray) and red (or median gray) denotes the

mean coordination for ALPHA, BETA, and ALPHA/BETA sets,

respectively. The scatter data for all the sampling points are shown
offering a complete overview of the behavior and variance of the data.

The dashed line traces the 12 neighbor limit, the characteristic number of

the close packing of identical spheres. (a) The average coordination with

alpha carbon (CA) residue representation. The arrows indicated some

regions of convergence between the mean curves, comprehending the

cutoff values at 5.2 Å and 6.8 Å. ALPHA/BETA tend to follow ALPHA

before 6.8 Å and to follow BETA after 6.8 Å. (b) The average coordination

with side chain GC residue representation shown the same convergence

region of 6.8 Å as in CA for ALPHA and BETA. ALPHA/BETA tends to

stay always over BETA pattern. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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The definition of surface in the context of this work is

particularly tough. It is known that sites on surface can

yield open Voronoi cells, with infinite volumes. Certainly,

this is a problem for some algorithms like those perform-

ing calculations on both the volume and the area of a

protein. Fortunately, this does not preclude the Delaunay

decomposition, which requires only that the circum-

sphere of each tetrahedron is empty of other sites. But,

sites on the protein surface will be free to compose edges

with any other site in the same condition, creating an

unreal number of neighbors by residues. These edges

may not be informative with respect to structure and

may introduce dangerous bias on contact statistics, as

demonstrated by our analysis at large cutoff of 28.0 Å.

Two forms to deal with this question are commonly

used. One way requires removing any DT edges and tet-

rahedrons that are not completely inside of the over-

lapped volumes of the sites. This subset of DT is fre-

quently called the ‘‘a-shape’’ of the molecule.4,89 The

question here is how to choice pertinent virtual volumes

for sites in coarse-grained models? The second well-

known way demands the introduction of fictitious sur-

face solvent molecules.1 But, this solution comes with

certain arbitrariness and must be made carefully. We con-

sciously opt in the present study do not treat protein sur-

faces because preliminary tests using the well-elaborated

surface solution of VORO3D program77 have given us

strong evidence that the solvation should have a promi-

nent effect in DT only in edges beyond 7.0 Å (vide Fig.

S5 at Supplementary Material). In fact, this comprised

yet another support to the hypothesis that the edges dis-

tribution up to 7.0 Å was generated mainly by buried

sites of the first coordination shell.

Another question that remains open is whether the

number of neighbors in a given cutoff can be used as a

way to measure the local packing density in proteins.

The number of neighbors will depend in a complex way

not only of the packing, but also of the size and form of

the sites. Fleming and Richards,2 describing some pack-

ing properties of 152 nonhomologous proteins, and using

the OSP metric have shown that helices seem to be more

efficiently packed than strands. They also found indica-

tions that aromatic residues tend to be better packed

than aliphatic ones. Liang and Dill4 found that larger

proteins tend to be more loosely packed than smaller

proteins. Angelov et al.,78 analyzing the Voronoi proper-

ties in a collection of 39 proteins, have shown that there

is a tendency of positive linear correlation between the

number of faces per cells (neighbors) and residue Voro-

noi volumes, although glycine, alanine, lysine, and argi-

nine stay outlines. As expected, glycine and tryptophan

were the extremes, with the first having in average 13.36

neighbors and the second 14.86 neighbors, a difference of

1.50 neighbors. As the authors did not give the standard

errors, we cannot judge the statistical relevance of these

differences, which seems to be very low. While Kuntz and

Grippen79 found inhomogeneities in local density pri-

marily related to differences in the clusters of nonpolar

side chains and backbone secondary structures, Tsai

et al.3 demonstrated that if surface waters are included in

calculations, the overall packing became high and fairly

uniform. But, in spite of this complexity, perhaps we

may give an alternative interpretation to data of Figure 9.

If we a priori assume (in a Bayesian fashion) that the

conclusions of Fleming and Richards2 are true and that

the difference in packing among the residues is not sig-

nificant in our data, and if we also look at the CA and

GC residue representations as signatures of backbone and

side chain contributions, respectively, perhaps it may be

possible to conjecture that the tendency of alpha proteins

to be more compact than beta proteins comes more from

the backbone.

We are also finalizing a work where very stringent fil-

tering conditions are applied in order to obtain as large

as possible data mart containing protein structures with

ONLY alpha helices or beta strands, and then conduct a

statistical analysis (including multivariate) of 43 parame-

ters from STING_DB, all in order to distinguish what in

fact is determining the packing characteristics of those

two major secondary structure elements, contributors to

the protein fold.

CONCLUSIONS

We have scrutinized several and different questions

related to the methodologies commonly used for pro-

specting protein contacts, producing some intriguing

results. Primarily, we came up with the discovery of the

cutoff number at about 7.0 Å as an important distance

parameter in analysis of contact in proteins. We saw that,

at this distance the CD and DT results converge, what

allowed us to unify the main properties of both techni-

ques: that all pairwise contacts are complete and true-

positive (counted and not occluded). We believe that

these characteristics comprehend a topological signature

of the first coordination shell and 7.0 Å is the lower

bound distance number that delimits it from other high-

est order layers of neighbors. This was also corroborated

by some preliminary tests applying radius distribution

function to our data, where we found that 7.0 Å is

always near a valley, independent of the protein class and

residue representation (data not shown). It was striking

too that at this distance we could not distinguish alpha

carbons (CA) from side chain GC residue representa-

tions. This unification of CD/DT also affirmed the linear

condition of the first order contacts and we noted that

there is a passage from linear to quadratic model when,

in CD, the cutoff probably extrapolates beyond the first

order of neighbors.

Note that the cutoff value at 7.0 Å will have the mean-

ing of optimum parameter candidate to better isolate the
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first layer of neighbors if it had been used the coarse-

grained residues representation of CA or GC. Other gran-

ularities may produce different reference cutoff values

and even different neighbor profiles, but this does not in-

validate the technique presented here. We are proposing

a method to estimate the better cutoff that can be

applied at any granularity, specifically to enclose as safe

as possible the first shell of neighbors.

Other unexpected conclusion concerned the applicabil-

ity of DT to prospect contacts in proteins. We viewed

that DT had a bothersome characteristic that made it to

ignore some sites close to the degenerate condition.

Although our estimated DT error was low (in the order

of 5% in BETA CA set), we have shown that it may be

systematic and not random. One alternate solution used

to solve this missing edges problem is the AD methodol-

ogy. However, we have empirically demonstrated that AD

tended to be a complement of DT, and therefore, their

sum converged to CD as the perturbation parameter

grows. If with CD, which is a much simpler technique

than DT or AD, within the range up to 7.0 Å we have

the same guarantee of full true-positive contacts, why use

DT or DT1AD? It is worth emphasizing that we are not

condemning DT and correlating techniques, as useless in

protein contact analysis. Angelov et al.78 have found in-

triguing properties in protein contacts, exploring topo-

logical parameters of the Voronoi cells, like the average

number of edges by face, that may be seen as a weight of

the contact related to the symmetry and type of interac-

tions among neighbors. Our work can only state, in the

strict range up to 7.0 Å in graphs of contacts with Eu-

clidean distance weight, that DT or DT1AD seem to be

not necessary since CD will yield, in a simpler way, com-

plete and reliable results.

Finally, our case study comparing CA and GC residue

representations shown that the use of cutoff below 6.8 Å

may conduce to contradictory results regarding the ques-

tion if either alpha or beta has a larger average number

of neighbors. We saw that at a lower value than this cut-

off, CA representation may induce a bias in favor of

alpha and GC representation in favor of beta. Further

investigations will be needed to verify if these biases are

relevant or not, mainly for applications where the preci-

sion of contacts may be crucial, like empirical potentials.

On the other hand, this final conclusion enforce the reli-

ability of the 7.0 Å value as an ideal lower bond cutoff to

be used in prospecting contacts in proteins, that is inde-

pendent of the coarse-grained CA or GC residue repre-

sentations.
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